Поскольку значение потока поля индукции физического вакуума не зависит от величины, охватывающей объем пространства поверхности интегрирования, то из определения понятия дивергенции
(теорема Гаусса-Остроградского) следует дифференциальная форма формулы в виде уравнения - первого уравнения системы дифференциальных уравнений силового поля поляризации физического вакуума.Соответственно из дивергентного уравнения
с учетом известного соотношения векторного анализа получаем следующее дифференциальное уравнение . Здесь функция - это векторный потенциал силового поля поляризации вакуума с единицами измерения в СИ , определяющий линейную плотность вакуумного «заряда». И еще. Поскольку в уравнении вектор реализуется посредством векторного произведения векторного оператора «Набла» на векторную функцию: , то тем самым однозначно устанавливается, что векторы и ортогональны между собой. Во-вторых, в уравнении , а потому поле вектора чисто вихревое, и по этой причине можно записать еще одно уравнение для поля другого потокового вектора в виде соотношения кулоновской калибровки: .Заметим, что единица измерения вектора
такова, что при частном дифференцировании по времени функции такого потокового вектора , он превращается в потоковый вектор поля индукции физического вакуума . Результат данного рассуждения позволяет предположить наличие функциональной связи между вектором напряженности поля поляризации физического вакуума и его векторным потенциалом в виде соотношения: . (2)Данное соотношение очевидно является фундаментальным, поскольку оно структурно аналогично знаковым соотношениям в теории электромагнитного поля:
и , а также гравитационного поля [4]. С практической точки зрения соотношение (2) должно помочь нам построить последнее уравнение в системе дифференциальных уравнений единого силового поля поляризации физического вакуума.В продолжение наших исследований рассмотрим последовательную цепочку, в которой сначала берется ротор от соотношения (2), а затем после учета уравнения
для векторного потенциала сюда снова подставляется соотношение (2), но уже продифференцированное по времени : . (3)В итоге имеем последнее четвертое уравнение в искомой системе дифференциальных динамических уравнений единого силового поля поляризации физического вакуума:
.Для проверки знака в уравнении
рассмотрим из соотношений (3) его промежуточную версию: . Соответственно, посредством соотношения (2), изменим уравнение так, чтобы оно с точностью до знака стало структурно симметричным : . В итоге мы получаем промежуточную версию полноправных уравнений поля поляризации физического вакуума в следующем виде:a)
, b) , (4)c)
, d) .На вопрос о правомерности знаков при временных производных в уравнениях (4а) и (4c) нагляднее и проще всего можно ответить напрямую, записав эти по сути дела волновые уравнения для компонент волны поляризационного поля при некой ориентации ее векторных компонент
и . Не сложно убедиться частным дифференцированием по и по функции плоской гармонической волны , распространяющейся со скоростью v в положительном направлении оси 0X, что ее волновое уравнение записывается в следующей форме: . Тогда, расписав в уравнениях (4а) и (4c) функции ротора для предложенной ориентации векторов полевых компонент и , получим в итоге и ,где константа
является скоростью распространения волн поляризации физического вакуума. Как видим, проверка показала, что знаки в представленных уравнениях (4а) и (4c) действительно верны.Таким образом, мы можем теперь записать окончательную версию системы дифференциальных уравнений единого силового поля поляризации физического вакуума с векторными компонентами напряженности поля поляризации
и поля векторного потенциала :