Смекни!
smekni.com

Метод решения жестких краевых задач без ортонормирования (стр. 2 из 3)

,

.

Это мы можем переписать в виде, более удобном для нас далее:

,

,

.

где

- единичная матрица.

Тогда в объединенном матричном виде получаем систему линейных алгебраических уравнений в следующей форме:

.

Эта система решается методом Гаусса с выделением главного элемента.

В точках, расположенных между узлами, решение находиться при помощи решения задач Коши с начальными условиями в i-ом узле:

.

Применять ортонормирование для краевых задач для жестких обыкновенных дифференциальных уравнений оказывается не надо.

3. Вычислительные эксперименты.

Вычислительные эксперименты проводились в сравнении с методом переноса краевых условий Алексея Юрьевича Виноградова. В этом методе используется построчное ортонормирование.

Без ортонормирования в методе переноса краевых условий А.Ю.Виноградова успешно решается задача, например, нагружения цилиндрической оболочки, которая консольно заделана по правому краю и нагружена по левому краю силой, равномерно распределенной по дуге окружности, с отношением длинны к радиусу L/R=2 и с отношением радиуса к толщине R/h=100. Для отношения R/h=200 задача без ортонормирования в методе переноса краевых условий уже не решается, так как выдаются ошибки из-за неустойчивости счета. С применением же ортонормирования в методе переноса краевых условий решаются успешно задачи и для параметров, например, R/h=300, R/h=500, R/h=1000.

Новый предлагаемый здесь метод позволяет решать все вышеуказанные тестовые задачи вовсе без применения операций ортонормирования, что значительно упрощает его программирование.

Для тестовых расчетов задач с вышеуказанными параметрами новым предлагаемым методом интервал интегрирования разделялся на 10 участков, а между узлами, как и сказано выше, решение находилось как решение задачи Коши. Для решения задач удерживалось 50 гармоник рядов Фурье, так как результат при 50 гармониках уже не отличался от случая удержания 100 гармоник.

Скорость же расчета тестовых задач новым предлагаемым методом не меньше, чем методом переноса краевых условий, так как оба метода в тестовых задачах при удержании 50 гармоник рядов Фурье выдавали готовое решение мгновенно после запуска программы на выполнение (на ноутбуке ASUS M51V CPU Duo T5800). В тоже время программирование нового предложенного здесь метода существенно проще, так как нет необходимости программировать процедуры ортонормирования.

ПРОГРАММА НА С++:

// sopryazhenie.cpp: главный файл проекта.

//Решение краевой задачи - цилиндрической оболочки.

//Интервал интегрирования разбит на 10 сопрягаемых участков: левый край - точка 0 и правый край - точка 10

//БЕЗ ОРТОНОРМИРОВАНИЯ

#include "stdafx.h"

#include <iostream>

#include <conio.h>

using namespace std;

//Умножение матрицы A на вектор b и получаем rezult.

void mat_on_vect(double A[8][8], double b[8], double rezult[8]){

for(int i=0;i<8;i++){

rezult[i]=0.0;

for(int k=0;k<8;k++){

rezult[i]+=A[i][k]*b[k];

}

}

}

//Вычисление матричной экспоненты EXP=exp(A*delta_x)

void exponent(double A[8][8], double delta_x, double EXP[8][8]) {

//n - количество членов ряда в экспоненте, m - счетчик членов ряда (m<=n)

int n=100, m;

double E[8][8]={0}, TMP1[8][8], TMP2[8][8];

int i, j, k;

//E - единичная матрица - первый член ряда экспоненты

E[0][0]=1.0; E[1][1]=1.0; E[2][2]=1.0; E[3][3]=1.0;

E[4][4]=1.0; E[5][5]=1.0; E[6][6]=1.0; E[7][7]=1.0;

//первоначальное заполнение вспомогательного массива TMP1 - предыдущего члена ряда для следующего перемножения

//и первоначальное заполнение экспоненты первым членом ряда

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

TMP1[i][j]=E[i][j];

EXP[i][j]=E[i][j];

}

}

//ряд вычисления экспоненты EXP, начиная со 2-го члена ряда (m=2;m<=n)

for(m=2;m<=n;m++) {

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

TMP2[i][j]=0;

for(k=0;k<8;k++) {

//TMP2[i][j]+=TMP1[i][k]*A[k][j]*delta_x/(m-1);

TMP2[i][j]+=TMP1[i][k]*A[k][j];

}

TMP2[i][j]*=delta_x;//вынесено за цикл произведения строки на столбец

TMP2[i][j]/=(m-1);//вынесено за цикл произведения строки на столбец

EXP[i][j]+=TMP2[i][j];

}

}

//заполнение вспомогательного массива TMP1 для вычисления следующего члена ряда - TMP2 в следующем шаге цикла по m

if (m<n) {

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

TMP1[i][j]=TMP2[i][j];

}

}

}

}

}

//Вычисление матрицы MAT_ROW в виде матричного ряда для последующего использования

//при вычислении вектора partial_vector - вектора частного решения неоднородной системы ОДУ на шаге delta_x

void mat_row_for_partial_vector(double A[8][8], double delta_x, double MAT_ROW[8][8]) {

//n - количество членов ряда в MAT_ROW, m - счетчик членов ряда (m<=n)

int n=100, m;

double E[8][8]={0}, TMP1[8][8], TMP2[8][8];

int i, j, k;

//E - единичная матрица - первый член ряда MAT_ROW

E[0][0]=1.0; E[1][1]=1.0; E[2][2]=1.0; E[3][3]=1.0;

E[4][4]=1.0; E[5][5]=1.0; E[6][6]=1.0; E[7][7]=1.0;

//первоначальное заполнение вспомогательного массива TMP1 - предыдущего члена ряда для следующего перемножения

//и первоначальное заполнение MAT_ROW первым членом ряда

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

TMP1[i][j]=E[i][j];

MAT_ROW[i][j]=E[i][j];

}

}

//ряд вычисления MAT_ROW, начиная со 2-го члена ряда (m=2;m<=n)

for(m=2;m<=n;m++) {

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

TMP2[i][j]=0;

for(k=0;k<8;k++) {

TMP2[i][j]+=TMP1[i][k]*A[k][j];

}

TMP2[i][j]*=delta_x;

TMP2[i][j]/=m;

MAT_ROW[i][j]+=TMP2[i][j];

}

}

//заполнение вспомогательного массива TMP1 для вычисления следующего члена ряда - TMP2 в следующем шаге цикла по m

if (m<n) {

for(i=0;i<8;i++) {

for(j=0;j<8;j++) {

TMP1[i][j]=TMP2[i][j];

}

}

}

}

}

//Задание вектора внешних воздействий в системе ОДУ - вектора POWER: Y'(x)=A*Y(x)+POWER(x):

void power_vector_for_partial_vector(double x, double POWER[8]){

POWER[0]=0.0;

POWER[1]=0.0;

POWER[2]=0.0;

POWER[3]=0.0;

POWER[4]=0.0;

POWER[5]=0.0;

POWER[6]=0.0;

POWER[7]=0.0;

}

//Вычисление vector - НУЛЕВОГО (частный случай) вектора частного решения

//неоднородной системы дифференциальных уравнений на рассматриваемом участке:

void partial_vector(double vector[8]){

for(int i=0;i<8;i++){

vector[i]=0.0;

}

}

//Вычисление vector - вектора частного решения неоднородной системы дифференциальных уравнений на рассматриваемом участке delta_x:

void partial_vector_real(double expo_[8][8], double mat_row[8][8], double x_, double delta_x, double vector[8]){

double POWER_[8]={0};//Вектор внешней нагрузки на оболочку

double REZ[8]={0};

double REZ_2[8]={0};

power_vector_for_partial_vector(x_, POWER_);//Расчитываем POWER_ при координате x_

mat_on_vect(mat_row, POWER_, REZ);//Умножение матрицы mat_row на вектор POWER_ и получаем вектор REZ

mat_on_vect(expo_, REZ, REZ_2);//Умножение матрицы expo_ на вектор REZ и получаем вектор REZ_2

for(int i=0;i<8;i++){

vector[i]=REZ_2[i]*delta_x;

}

}

//Решение СЛАУ размерности 88 методом Гаусса с выделением главного элемента

int GAUSS(double AA[8*11][8*11], double bb[8*11], double x[8*11]){

double A[8*11][8*11];

double b[8*11];

for(int i=0;i<(8*11);i++){

b[i]=bb[i];//Работать будем с вектором правых частей b, чтобы исходный вектор bb не изменялся при выходе из подпрограммы

for(int j=0;j<(8*11);j++){

A[i][j]=AA[i][j];//Работать будем с матрицей А, чтобы исходная матрица АА не менялась при выходе из подпрограммы

}

}

int e;//номер строки, где обнаруживается главный (максимальный) коэффициент в столбце jj

double s, t, main;//Вспомогательная величина

for(int jj=0;jj<((8*11)-1);jj++){//Цикл по столбцам jj преобразования матрицы А в верхнетреугольную

e=-1; s=0.0; main=A[jj][jj];

for(int i=jj;i<(8*11);i++){//Находится номер е строки, где лежит главный (максимальный) элемент в столбце jj и делается взаимозамена строк

if ((A[i][jj]*A[i][jj])>s) {//Вместо перемножения (удаляется возможный знак минуса) можно было бы использовать функцию по модулю abs()

e=i; s=A[i][jj]*A[i][jj];

}

}

if (e<0) {

cout<<"Mistake "<<jj<<"&bsol;n"; return 0;

}

if (e>jj) {//Если главный элемент не в строке с номером jj. а в строке с номером е

main=A[e][jj];

for(int j=0;j<(8*11);j++){//Взаимная замена двух строк - с номерами e и jj

t=A[jj][j]; A[jj][j]=A[e][j]; A[e][j]=t;

}

t=b[jj]; b[jj]=b[e]; b[e]=t;

}

for(int i=(jj+1);i<(8*11);i++){//Приведение к верхнетреугольной матрице

for(int j=(jj+1);j<(8*11);j++){

A[i][j]=A[i][j]-(1/main)*A[jj][j]*A[i][jj];//Перерасчет коэффициентов строки i>(jj+1)

}

b[i]=b[i]-(1/main)*b[jj]*A[i][jj];

A[i][jj]=0.0;//Обнуляемые элементы столбца под диагональным элементом матрицы А

}

}//Цикл по столбцам jj преобразования матрицы А в верхнетреугольную

x[(8*11)-1]=b[(8*11)-1]/A[(8*11)-1][(8*11)-1];//Первоначальное определение последнего элемента искомого решения х (87-го)

for(int i=((8*11)-2);i>=0;i--){//Вычисление елементов решения x[i] от 86-го до 0-го

t=0;

for(int j=1;j<((8*11)-i);j++){

t=t+A[i][i+j]*x[i+j];

}

x[i]=(1/A[i][i])*(b[i]-t);

}

return 0;

}

int main()

{

int nn;//Номер гармоники, начиная с 1-й (без нулевой)

int nn_last=50;//Номер последней гармоники

double Moment[100+1]={0};//Массив физического параметра (момента), что рассчитывается в каждой точке между краями

double step=0.05; //step=(L/R)/100 - величина шага расчета оболочки - шага интервала интегрирования (должна быть больше нуля, т.е. положительная)

double h_div_R;//Величина h/R

h_div_R=1.0/100;

double c2;

c2=h_div_R*h_div_R/12;//Величина h*h/R/R/12

double nju;

nju=0.3;

double gamma;

gamma=3.14159265359/4;//Угол распределения силы по левому краю

//распечатка в файлы:

FILE *fp;

// Open for write

if( (fp = fopen( "C:/test.txt", "w" )) == NULL ) // C4996

printf( "The file 'C:/test.txt' was not opened&bsol;n" );

else

printf( "The file 'C:/test.txt' was opened&bsol;n" );

for(nn=1;nn<=nn_last;nn++){ //ЦИКЛ ПО ГАРМОНИКАМ, НАЧИНАЯ С 1-ОЙ ГАРМОНИКИ (БЕЗ НУЛЕВОЙ ГАРМОНИКИ)

double x=0.0;//Координата от левого края - нужна для случая неоднородной системы ОДУ для вычисления частного вектора FF

double expo_from_minus_step[8][8]={0};//Матрица для расположения в ней экспоненты на шаге типа (0-x1)

double expo_from_plus_step[8][8]={0};//Матрица для расположения в ней экспоненты на шаге типа (x1-0)

double mat_row_for_minus_expo[8][8]={0};//вспомогательная матрица для расчета частного вектора при движении на шаге типа (0-x1)

double mat_row_for_plus_expo[8][8]={0};//вспомогательная матрица для расчета частного вектора при движении на шаге типа (x1-0)