Смекни!
smekni.com

Теоремы софиста Горгия и современная математика (стр. 4 из 4)

И проблемы с этим доказательством действительно начались, но они оказались не в компьютерной части, а в человеческой. В доказательстве были найдены недочёты. Понятно, что такой длины текст, содержащий сложные переборы, конечно, может содержать ошибки. Ошибки эти были найдены, но, к счастью, их удалось исправить.

Осталась компьютерная часть, которую с тех пор уже тоже проверили не на одном компьютере, переписывая даже программы, просто проделав тот же перебор. Ведь если сказано, что именно следует перебирать, то каждый может написать свою программу и проверить, что результат будет такой, как надо. И мне, например, кажется, что использование таких вот больших компьютерных переборов в доказательстве — это как раз не проблема. Почему? А вот по той же причине, которая на примере проблемы четырёх красок уже проявилась — что к компьютерным доказательствам доверия гораздо больше, чем к человеческим, а не меньше. Кричали, что компьютер — это же машина, а вдруг она где-то сломалась, сбилась, что-то там неправильно посчитала... А вот этого как раз быть не может. Потому что если компьютер случайно где-то засбоил, и произошла ошибка — нолик случайно заменился на единичку, — это не приведёт к неверному результату. Это приведёт к отсутствию результата, просто программа в конце концов сломается. Какая типичная операция, которую компьютер выполняет? Взяли из такого-то регистра такое-то число и передали по нему управление туда-то. Естественно, что если в этом числе произошло изменение в один бит, управление передалось вообще неизвестно куда, там написаны какие-то команды, которые очень скоро просто всё разрушат.

Может быть, конечно, ошибка в написании программы для компьютера, но это уже человеческая ошибка. Человек может прочитать программу и проверить, правильная она или нет. Так же человек может прочитать чужое доказательство и проверить, правильное оно или нет. Но у человека гораздо больше шансов ошибиться, чем у компьютера. Если вы читаете чужое достаточно длинное доказательство, и в нём есть ошибка, то есть все шансы, что вы её не заметите. Почему? В первую очередь, потому, что раз сам автор доказательства сделал эту ошибку — значит, она психологически обоснована. То есть, он не просто так её сделал, по случайности — это в принципе такое место, где типичный человек может сделать такую ошибку. Значит, и вы можете сделать ту же самую ошибку, читая это место и соответственно её не заметив. Поэтому проверка человеком человеческого же доказательства — это гораздо менее надёжный способ проверки, чем проверка результата работы компьютерной программы с помощью запуска её ещё раз на какой-то другой машине. Второе практически гарантирует, что всё нормально, а первое — это как повезло.

И вот с этой проблемой — найти ошибку в записанном людьми математическом тексте — становится всё труднее, а иногда и вообще невозможно — это серьёзная проблема современной математики. С ней нужно бороться. Как — сейчас пока никто не знает. А проблема большая и всерьёз возникла именно сейчас — тому несколько примеров существует. Вот, возможно, менее известный, но один из самых современных. Это старинная гипотеза Кеплера. Говорит она об укладывании шариков в трёхмерном пространстве.

Давайте сначала посмотрим, что происходит в двумерном пространстве, т.е. на плоскости. Пусть у нас есть одинаковые кружочки. Как плотнее всего нарисовать их на плоскости, чтобы они не пересекались? Есть ответ — надо поместить центры кружков в узлы шестиугольной решётки. Это утверждение не совсем тривиальное, но лёгкое.

А в трёхмерном пространстве как бы вы стали плотно упаковывать шарики? Сначала разложим на плоскости шарики так, как показано на рисунке 6. Потом сверху положим ещё один такой же слой, вдавливая до упора, как показано на рисунке 7. Потом сверху ещё один такой же слой, и так далее.

Рис. 6.

Рис. 7.

Интуитивно очевидно, что это и есть самый плотный способ уложить шарики в трёхмерном пространстве. Кеплер утверждал (и, похоже, первым сформулировал), что эта упаковка должна быть самой плотной упаковкой в трёхмерном пространстве.

Произошло это в XVII веке, с тех пор эта гипотеза и стоит. В начале XXI века появилось её доказательство. И любой из вас может его достать и прочитать. Оно в открытом доступе лежит в Интернете. Это статья в двести с чем-то страниц. Она написана каким-то одним человеком и тоже содержит как некоторые чисто математические рассуждения, так и компьютерный счёт.

Сначала автор математическими рассуждениями пытается свести задачу к проверке конечного числа случаев. После этого, иногда используя компьютер, он это конечное, но очень большое число случаев проверяет, всё сходится, и — ура! — гипотеза Кеплера доказана. И вот проблема с этой статьёй — её никто не может прочитать. Потому что она тяжёлая, потому что местами не совсем понятно, что перебор действительно полный, потому что просто скучно её читать. Двести страниц скучных вычислений. Человек её прочитать не в силах.

Вообще говоря, все верят, что эта статья содержит доказательство этой теоремы. Но, с другой стороны, никто до сих пор не проверил это честно, в частности, эта статья не опубликована ни в одном рецензируемом журнале, т.е. никакой уважающий себя математик не готов поставить подпись под утверждением, что «да, всё верно, и гипотеза Кеплера доказана».

И это не единственная ситуация, и в других областях математики такое тоже встречается. Совсем недавно я напоролся на список нерешённых проблем в теории множеств, в теории моделей, в разных областях. И вот к одной гипотезе там комментарии такие: она якобы опровергнута в статье вот такой-то, но никто в это не верит.

Вот такая ситуация. Человек доказал утверждение, но передать это другому, рассказать это другому он не в силах.

Самый страшный пример — это, конечно, классификация конечных простых групп. Я не буду формулировать точно, что это такое, что такое группы, что такое конечные группы, если захотите — узнаете сами. Конечные группы все в некотором смысле собираются из простых блоков, которые называются простыми группами, а те уже нельзя разобрать на более мелкие блоки. Этих конечных простых групп бесконечно много. Полный их список выглядит так: это 18 бесконечных серий, к которым ещё в конце добавлены 26 отдельных групп, которые построены каким-то отдельным способом и ни в какую серию не входят. Утверждается, что этот список содержит все конечные простые группы. Задача страшно нужная для математики. Поэтому в 70-е годы, когда появились некоторые особенные идеи и надежды на её решение, на задачу накинулись несколько сот математиков из разных стран, из разных институтов, каждый брался за свой кусочек. Были и, так сказать, архитекторы этого проекта, которые примерно представляли, как всё это вместе потом будет собрано в единое доказательство. Понятно, что люди торопились, конкурировали. В результате, кусочки, которые они делали, — это в совокупности около 10 000 журнальных страниц, и это только то, что опубликовано. А есть ещё и статьи, которые существовали или в виде препринтов, или в виде машинописных копий. Я сам одну такую статью читал в своё время, она так никогда и не была опубликована, хотя включает в себя заметный кусочек этого полного доказательства. И вот эти 10 000 страниц разбросаны в разных журналах, написаны разными людьми, с разной степенью понятности, и обычному математику, не связанному с этим и не являющемуся одним из архитекторов этой теории, мало того что невозможно прочитать все 10 000 страниц, так ещё и очень трудно понять само устройство доказательства. К тому же с тех пор некоторые из этих архитекторов просто умерли.

Объявили, что классификация завершена, хоть доказательство и существует лишь в виде текста, который никто прочитать не может, и это привело к следующей неприятности. Новые математики с меньшей охотой стали идти в теорию конечных групп. Всё меньше и меньше людей этим занимается. И вполне может случиться, что через 50 лет уже вообще на Земле не найдётся человека, который будет способен что-то понять в этом доказательстве. Будут ходить легенды: наши великие предки умели доказывать, что все конечные простые группы перечислены вот в этом списке и что других нет, но сейчас это знание утеряно. Вполне реалистичная ситуация. Но, к счастью, не один я считаю эту ситуацию реалистичной, поэтому с ней борются, и я слышал, что даже организовали специальный проект «Философские и математические проблемы, связанные с доказательством классификации конечных простых групп». Есть люди, которые пытаются это доказательство привести к читаемому виду, и, может быть, когда-нибудь это действительно получится. Есть люди, которые пытаются разобраться, что же делать со всеми этими трудностями. Человечество помнит об этой задаче, и, значит, оно с ней в конце концов справится. Но тем не менее вполне может быть, что будут появляться другие такие же сложные теоремы, которые могут быть доказаны, но доказательство которых никто не способен прочитать, никто не способен никому рассказать.

Четвёртая теорема Горгия

Ну и теперь четвёртая теорема, о которой я немного расскажу, может быть даже самая страшная — «ежели даже и сможет рассказать, то никто не заинтересуется». Некий осколок от этой проблемы уже прозвучал. Людям перестало интересно заниматься конечными группами. Всё меньше и меньше людей этим занимаются, и масса знаний, которая сохранилась в виде текстов, уже никому не нужна, её никто не умеет читать. Это тоже беда, которая грозит многим областям математики.

Понятно, что некоторым областям математики везёт. Например, та же самая теория графов и комбинаторика. Чтобы серьёзно начать ими заниматься, нужно знать совсем немного. Вы немножко узнали, порешали олимпиадные задачки, один шаг — и перед вами уже нерешённая проблема. Есть за что взяться — ура, берёмся, интересно, занимаемся... Но есть области математики, в которых даже для того, чтобы почувствовать, что эта область действительно красива и что ей хочется заниматься, нужно очень многое узнать. И при этом по дороге ещё много другого красивого узнаёшь. Но тебя не должны эти красоты, встреченные по дороге, отвлечь, и в конце концов ты добираешься вот туда, в самые дебри, уже там видишь красоту, и уже тогда, узнав очень многое, становишься способен заниматься этой областью математики. И вот эта трудность — проблема для таких областей. Чтобы область математики развивалась, нужно, чтобы ею занимались. Достаточному числу людей это должно быть настолько интересно, чтобы они преодолели все трудности, забрались туда и уже после этого продолжили этим заниматься. И сейчас математика доходит до такого уровня сложности, что для многих областей именно это становится основной проблемой.

Как человечество со всеми этими проблемами будет справляться — я не знаю, но посмотреть будет интересно.

Вот, собственно, и всё.