Смекни!
smekni.com

Фрактальность (стр. 3 из 3)

Какова же «истинная» размерность клубка шерсти? Да её просто не существует: всё зависит от точки зрения наблюдателя, разрешающей способности его глаз или прибора.

Муравей в лабиринте

Появление фракталов позволило (точнее, по-видимому, позволило) разрешить ещё одну загадку, издавна мучившую физиков: почему в большинстве эмпирических формул, в изобилии встречающихся в любом инженерном справочнике, показатели степеней в различных зависимостях такие «некрасивые», то есть выражаются необъяснимо странными, с точки зрения традиционной физики, дробными числами типа 1,1378... или 2,9315...? Ответ, по-видимому, надлежит искать в том, что при разрешениях, достижимых в технике, в игру вступает фрактальность среды, поверхности и т.д., не принимавшаяся во внимание физиками, но вполне ощутимая на эмпирическом уровне для инженеров.

Мы уже упоминали о том, что физика фрактальной среды иногда сильно отличается от физики сплошной среды. Приведём лишь один пример.

Средний квадрат расстояния, на которое удаляется от исходной точки случайно блуждающая частица (математическая модель совершенно пьяного гуляки, делающего очередной шаг с равной вероятностью в любую сторону), пропорционален времени, если речь идёт об обычной, сплошной среде. В фрактальной среде это не так. Даже на глаз, без всяких расчётов, видно, что случайно блуждающая частица будет удаляться от места старта медленнее, так как далеко не все направления для неё доступны: извилистый канал выбирает из множества ранее доступных направлений лишь малое подмножество разрешённых направлений. Средний квадрат расстояния для фрактальной среды оказывается пропорциональным некоторой дробной степени времени, показатель которой связан с фрактальной размерностью среды.

Это, в частности, означает, что диффузия в фрактальной среде происходит не так, как в обычной, сплошной среде. Множество препятствий (узких мест, крутых поворотов и тупиков) затрудняют продвижение частиц и замедляют диффузию. Лауреат Нобелевской премии де Жён сравнил частицу, блуждающую в фрактальной среде, с муравьём в лабиринте. Трудно приходится муравью. Отсюда и дробные показатели в различных зависимостях.

Замедление диффузии в фракталах столь существенно, что она перестаёт удовлетворять классическому закону Фика и — как следствие — уравнению диффузии. Не спасает положение и попытка ввести переменный коэффициент диффузии, зависящий от концентрации частиц. Возникает новое, интегро-дифференциальное уравнение, содержащее новый необычный объект — производную (по времени) дробного порядка, связанного с фрактальной размерностью среды. Ситуация несколько напоминает финал поэмы Льюиса Кэрролла «Охота на Снарка», где одно невиданное чудовище — Снарк — оказывается другим невиданным чудовищем — Буджумом. Впрочем, причудливость фрактальной геометрии в какой-то мере подготавливает нас к тому, что и физика происходящих в фрактальной среде процессов, в частности диффузии, должна описываться необычными средствами.

Эстетика фракталов

Многие фракталы обладают эстетической привлекательностью. Более того, они просто неотразимы. Во многих странах мира демонстрировалась выставка, созданная в содружестве с художниками бременскими м... (нет, не музыкантами!) математиками Рихтером и Пейтгеном. На ней экспонировалось около полутораста художественных изображений фракталов. Весь мир обошли компьютерные «лунные» пейзажи, выполненные на основе фрактальных множеств Бенуа Мандельбротом и его сотрудниками.

Звуковая палитра современных композиторов может быть значительно расширена за счёт звучания электронных инструментов с различными фрактальными характеристиками.

Наконец, нельзя не упомянуть и об изящной словесности, ибо ей явно недостаёт свежей фрактальной струи. Какие захватывающие приключения ожидают Тезея в закоулках фрактального лабиринта, где за каждым поворотом его может поджидать роковая встреча с Минотавром! Какой длины должна была бы быть в среднем спасительная нить Ариадны, чтобы Тезей мог благополучно выбраться из лабиринта? Смог бы Том Сойер вывести Бекки Тэтчер из подземных фрактальных пещер, и сколько времени ему для этого потребовалось бы? Фракталы позволяют по-новому взглянуть и даже отчасти реабилитировать героев некоторых детских сказок, пользовавшихся репутацией отъявленных плутов и мошенников. Вспомним хотя бы сказку «Новое платье короля» Ганса Христиана Андерсена. Если бы портные сшили новое платье короля из фрактальной ткани, на изготовление которой пошло бесконечное количество шёлка, бархата и золота, то и тогда король вполне мог бы казаться голым. Произнёсший знаменитую фразу ребёнок изрёк бы очевидную истину, ложность которой стала бы ясна только при более основательном знакомстве с теорией фракталов (чего ни в коем случае нельзя предполагать и тем более требовать от невинного малютки).

Фракталы неисчерпаемы, как неисчерпаемы их приложения в науке, технике, литературе и искусстве.

Эпилог

Наше краткое повествование об одном из чудес современной науки — фракталах — подходит к концу. Как всегда, когда речь заходит о науке, мы ставим не точку, а многоточие — наука продолжает жить и созидать новое знание.

Но прежде чем попрощаться с читателем и поблагодарить его за терпение, нам бы хотелось предостеречь от одной чрезвычайно распространённой и чрезвычайно соблазнительной ошибки.

С появлением фракталов со всей очевидностью стала ясна ограниченность описания природы с помощью гладких кривых, поверхностей и гиперповерхностей. Окружающий нас мир гораздо разнообразнее, и в нём оказалось немало объектов, допускающих фрактальное описание и не укладывающихся в жёсткие рамки евклидовых линий и поверхностей.

Не следует забывать, однако, о том, что и фракталы — не более чем упрощённая модель реальности, применимая к достаточно широкому, но всё же ограниченному кругу предметов и явлений, и не претендует и не может претендовать на роль своеобразного универсального ключа к описанию природы. Как сказал Дж.Б.С. Холдейн, «мир устроен не только причудливей, чем мы думаем, но и причудливей, чем мы можем предполагать».