Рис. 4
Гравитационное поле одиночного источника
Рассмотрим гравитационное поле, создаваемое частицей массой M. Расположим площадку s так, чтобы единичный вектор i был направлен в сторону центра частицы, а его начало совпало с рассматриваемой точкой поля (рис. 5). (В этом случае i = - r/r, где r - радиус - вектор, соединяющий центр частицы с рассматриваемой точкой поля.)
Рис. 5
Пусть один массон в течение кванта времени T испускает m квантов гравитационной энергии. Тогда частица, состоящая из M массонов, за то же время T будет испускать кванты гравитационной энергии в количестве mM. Через площадку s за один квант времени T будет проходить гравитационная энергия в количестве
где ε - объемная плотность гравитационной энергии в излучении на расстоянии r от источника:
Из формул (1), (2), (4) и (5) получим
Подставив полученное выражение для n в формулу (3), найдем напряженность гравитационного поля на расстоянии r от источника с массой M:
Полученную формулу можно упростить для расстояний uT << r << R G:
Введем гравитационную постоянную:
Формула (6) примет классический вид:
В случае движения площадки s со скоростью v, относительно гравитационного эфира, изменится число квантов гравитационной энергии, пересекающей площадку s за время T. Перепишем формулу (4) с учетом движения площадки s:
где color=#000000>θ - угол, образованный вектором скорости v с радиусом - вектором r.
Полная формула для определения напряженности гравитационного поля на расстоянии r от источника с массой M, учитывающая абсолютное движение приемника гравитационного излучения, будет выглядеть следующим образом:
Гравитационное поле вселенной
Определим напряженность гравитационного поля созданного совокупной массой вселенной, в заданной точке пространства O и в заданном направлении (рис. 6).
Рис. 6
Будем считать, что точка O расположена достаточно далеко от одиночных источников гравитационного излучения. Расположим площадку s таким образом, чтобы начало и направление единичного вектора i, нормали к площадке s, совпали, соответственно, с заданной точкой пространства O и с заданным направлением. Введем декартову систему координат так, чтобы ее начало совпало с заданной точкой O, а направление оси OZ совпало с заданным направлением. Ось OX зафиксируем в произвольном направлении. Искомую напряженность гравитационного поля создают только те источники гравитационного излучения, координаты которых удовлетворяют условию:
Область V, удовлетворяющая данному условию, есть полушарие. Разобьем область V на элементарные объемы V k, включающие в себя точки O k. Каждый элементарный объем V k вносит свой вклад в искомую напряженность гравитационного поля в виде
где ρ k - плотность вещества в элементарном объеме V k, а x k, y k, z k - координаты точки O k. Предположим, что вещество во вселенной распределено равномерно по всему объему, тогда, при V k → 0, получим суммарную напряженность гравитационного поля G s в заданной точке пространства и в заданном направлении:
где ρ s - средняя плотность вещества во вселенной. При переходе от декартовых координат x, y, z к сферическим координатам r, θ, φ, связанным с x, y, z соотношениями:
x = rsinθcosφ, y = rsinθsinφ, z = rcosθ,
якобиан преобразования J = r 2sinθ и формула (8) примет вид:
Сферические координаты изменяются в следующих пределах:
Вычислив интеграл, получим искомую напряженность гравитационного поля, созданного совокупной массой вселенной:
Напряженность гравитационного поля, созданного совокупной массой вселенной, можно найти другим способом. Из закона сохранения энергии следует, что массон в течение кванта времени T должен испускать и поглощать одно и то же количество квантов гравитационной энергии. То есть, внутри сферы с радиусом uT, окружающей заданную точку пространства, находятся m гравитационных квантов, испущенных совокупной массой вселенной, которые будут поглощены массоном в течение одного кванта времени T. Следовательно, через единицу площади поверхности массона за время T проходят гравитационные кванты в количестве
где r m - радиус массона. Через площадку s, равную по площади
расположенную в той же точке пространства, за время T будут проходить гравитационные кванты в количестве
Подставив значение n в формулу (3), найдем искомую напряженность гравитационного поля
Приравняем правые части формул (9) и (10):
Подставив значение face="Times New Roman, Times, serif" γ из формулы (7) в последнее уравнение, найдем среднюю плотность вещества во вселенной:
С учетом найденной плотности ρ s модуль напряженности гравитационного поля, созданного совокупной массой вселенной, будет равен
Формулы (9) и (10) справедливы для любой точки пространства, достаточно удаленной от одиночных источников гравитационного излучения, и для любого направления. Поэтому результирующая напряженность гравитационного поля в этих точках пространства равна нулю. Относительно приемника излучения, движущегося со скоростью v в абсолютной системе отсчета, симметрия гравитационного поля, созданного совокупной массой вселенной, будет нарушена:
где θ - угол, образованный вектором скорости v с радиусом - вектором r, соединяющим приемник и источник гравитационного излучения. (Направление единичного вектора i, нормали к площадке s, совпадает с направлением вектора скорости v.) Вычислив интеграл, получим:
Движение тела в гравитационном поле
Исходя из предложенной модели, рассмотрим свободное падение пробного тела в гравитационном поле одиночного источника излучения. Пусть одиночный источник в месте нахождения пробного тела создает гравитационное поле с напряженностью
Будем считать, что некая сила удерживает пробное тело в неподвижном положении, относительно источника. В момент времени t 0 удерживающая сила исчезает. С момента времени t 0 до момента времени t 1 = t 0 + T пробное тело остается неподвижным. При этом со стороны одиночного источника излучения к поверхности каждого массона пробного тела, поступает на n 0 гравитационных квантов больше, чем с любой другой стороны. Поэтому, в течение следующего кванта времени T, с момента времени t 1 до момента времени t 2 = t 1 + T, пробное тело совершит n 0 перемещений l в направлении одиночного источника гравитационного излучения. Таким образом, если за промежуток времени T = t 1 - t 0 средняя скорость пробного тела была равна нулю:
v 0 = 0,
то в течение следующего кванта времени T = t 2 - t 1 она составила величину
(В дальнейшем скорость тела, измеренную в течение одного кванта времени T, будем называть мгновенной скоростью.) Результирующая напряженность гравитационного поля, измеренная относительно движущегося тела за промежуток времени T = t 2 - t 1, будет равна
Такой же будет мгновенная скорость пробного тела в течение следующего кванта времени T = t 3 - t 2:
Мгновенная скорость тела, измеренная в течение (k+1) - го кванта времени, равна результирующей напряженности гравитационного поля, измеренной, относительно движущегося тела, в течение k - го кванта времени:
где k = 0, 1, 2, 3, …
Если пробное тело движется в гравитационном поле с напряженностью G в произвольном направлении, его мгновенная скорость v k +1 будет равна