Ю.А. Данилов
1. Предыстория
На стыке XIX и XX веков научное сообщество пребывало в радужном настроении — и не без основания: казалось, ещё несколько штрихов, и картина мира будет построена. Классическая наука к концу XIX века по праву могла гордиться своими достижениями. Со времён Ньютона мир, который древние разделяли на подлунную и надлунную сферы, стал единым, в нём действовали единые познаваемые (и, как полагали представители естественнонаучных и философских кругов, в значительной мере познанные) законы.
Подведение итогов превратилось в гордую демонстрацию блестящих достижений классического естествознания и точных наук и стало удобным поводом для определения перспектив. Так, на II Международном конгрессе математиков в августе 1900 года в Париже Давид Гильберт в своём докладе сформулировал 23 проблемы, которые, по его мнению, математика XIX века завещала решить математике XX века. Как показали последующие события, Гильберт не ошибся в определении «точек роста» математики: решение каждой из 23 проблем Гильберта становилось заметным шагом в развитии математической науки и было заметным продвижением. Не менее проницательным оказался и патриарх физики XIX века Уильям Томсон (с 1802 г. лорд Кельвин). В своих «Балтиморских лекциях» он прозорливо указал на два «тёмных облачка» на блистающем небосводе классической физики. Из одного «тёмного облачка» вскоре выросла специальная теория относительности Эйнштейна, из другого — квантовая механика. Но существовало ещё одно «тёмное облачко», укрывшееся от проницательного взгляда лорда Кельвина за горизонтом — нелинейная динамика. В 1884 г. Анри Пуанкаре опубликовал серию работ под общим названием «О кривых, определяемых дифференциальными уравнениями», заложив математические основы ещё одного направления в неклассическом естествознании — нелинейной динамики.
Благостные иллюзии о познанности мира средствами классического естествознания развеялись довольно скоро: в декабре 1900 г. в своём докладе на Берлинском заседании Немецкого физического союза Макс Планк выдвинул дерзкую гипотезу квантов, согласно которой электромагнитная энергия могла поглощаться и излучаться не сколь угодно малыми, а конечными порциями — квантами, величина которых пропорциональна частоте излучения. Гипотеза квантов позволила Планку решить давно стоявшую в физике острую проблему получения единой кривой распространения энергии в спектре излучения чёрного тела. (Об остроте проблемы можно судить хотя бы потому, что она получила название «ультрафиолетовой катастрофы».) И хотя у самого Планка квант ещё не был физической сущностью, а гипотеза квантов носила характер чисто математического приёма, позволившего проинтерполировать две известные ранее ветви кривой распределения энергии в спектре электромагнитного излучения, введение гипотезы квантов позволило Планку устранить ультрафиолетовую катастрофу. Физической сущностью квант стал в 1905 г., когда Эйнштейн понял, что электромагнитное излучение не только поглощается и испускается, но и распространяется квантами. На представлении о физически реальном кванте Эйнштейн построил свою знаменитую теорию фотоэлектрического эффекта, за которую в 1921 г. был удостоен Нобелевской премии по физике. «Полнокровная» квантовая теория была создана в конце 1920-х годов усилиями Зоммерфельда, Гейзенберга, Паули, Шрёдингера, Борна и других исследователей.
Свою неклассическую специальную теорию относительности Эйнштейн опубликовал в 1905 г. в работе «К электродинамике движущихся сред».
Если квантовая теория порывала с неявно содержавшейся в классической физике гипотезой о безграничной делимости энергии, то специальная теория относительности заставила отказаться от ньютоновского абсолютного пространства и абсолютного времени, влила новое содержание в понятие синхронизма событий и слила существовавшие ранее в отрыве одно от другого понятия пространства и времени в единый четырёхмерный континуум «пространство — время».
Третья, скрытая за горизонтом «тучка» в полной мере проявила себя в 1930-е годы, когда насущные потребности развития техники, в частности радиофизики, вынудили физиков перейти от линейного приближения к нелинейным моделям. Первое время казалось, что такой переход не сопряжён со столь коренной ломкой классических представлений, как создание квантовой теории или специальной теории относительности. Область линейных явлений была столь привычна, столь хорошо «обжита», оборудована хорошо разработанным математическим аппаратом, над созданием которого не одно столетие трудились самые блестящие умы, что покидать её без особой надобности физикам очень не хотелось. Высказывались робкие надежды, что нелинейность, возможно, удастся преодолеть с помощью введения в линейные модели (в основном дифференциальные уравнения) небольших добавочных членов. Высказывались также опасения (вызванные трудностью решения малоизвестных тогда нелинейных дифференциальных уравнений), что создать нелинейную теорию, сравнимую по широте охвата явлений и универсальности с линейными теориями, вряд ли удастся, и нелинейные теории сведутся к коллекционированию того или иного набора частных решаемых случаев моделей нелинейных явлений. Много позднее эти опасения были наголову разбиты (вспомним хотя бы «солитонистику», универсальности Фейгенбаума, цепочки Тоды и многие другие нелинейные модели, не уступающие по ширине охвата явлений линейным моделям и к тому же точно решаемые). Первым, кто понял бесперспективность «линейного подхода» к нелинейным явлениям и правильно оценил необходимость изучения нелинейных явлений как таковых, без сведения их к линейному приближению, слегка «подпорченному» малым дополнительным членом, стал академик Леонид Исаакович Мандельштам, сформулировавший программу воспитания (или выработки) у физиков нелинейной интуиции — «нелинейного мышления» — на основе арсенала идей и образов первично нелинейных не сводимых к малым добавочным членам в линейных математических моделях. Л.И. Мандельштам, его коллега академик Николай Дмитриевич Папалекси, ученики и последователи А.А. Андронов, А.А. Витт, С.Э. Хайкин, С.М. Рытов и другие во многом осуществили программу создания «нелинейного мышления». Разработанная ими теория нелинейных колебаний стала предтечей синергетики и позволила понять и проанализировать многие явления различной природы, объяснение и тем более предсказание которых было не по силам линейной теории.
2. История
В истории культуры термин «синергия» — совместное, согласованное действие нескольких начал — встречалось и раньше. Так, у средневековых теологов можно встретить упоминание о «синергии» — единении или слиянии человека и Бога в молитве. У физиолога Шеррингтона мы встречаем термин «синергия», означающий слаженную работу сгибающих и разгибающих мышц.
Термин «синергетика» как название нового междисциплинарного направления научных исследований был введён Германом Хакеном в курсе лекций, прочитанных им в 1969 г. в университете Штутгарта. Научное сообщество встретило появление синергетики без особого энтузиазма, более того, градом незаслуженных упрёков, необоснованных обвинений. В чём только ни упрекали новое направление научных исследований его противники и (не всегда добросовестные) критики: они утверждали, будто синергетика — денотат пустого понятия и не имеет ни собственного предмета исследования, ни присущего только ей метода исследования, будто она излишне математизирована и представляет собой одну из разновидностей физикализма, будто синергетика лишена непременного отличительного атрибута науки — прогностической силы, и развивается не интенсивно, а экстенсивно.
Но вот минули три десятилетия, наполненные неустанными трудами проф. Г. Хакена, его сотрудников, учеников, единомышленников и даже, как ни парадоксально, некоторых противников, упорно не желающих признавать синергетику, но обогативших её новыми идеями, понятиями и методами, и со всей очевидностью выяснилось, что все опасения, сомнения и упрёки в адрес синергетики несостоятельны.
3. Что такое синергетика?
Современная синергетика стала признанными междисциплинарным направлением научных исследований. Она занимается изучением сложных систем, состоящих из многих элементов, частей, компонентов, подсистем, взаимодействующих между собой сложным (нелинейным) образом.
Свой выбор термина «синергетика» проф. Г. Хакен объясняет следующим образом:
«Я выбрал слово «синергетика» потому, что за многими дисциплинами в науке закреплены греческие термины. Я искал такое слово, которое выражало бы совместную деятельность, общую энергию что-то сделать, так как системы самоорганизуются, и поэтому может показаться, что они стремятся порождать новые структуры. Я обратился тогда за советом к моему школьному другу Гансу Кристофу Вольфу, который хорошо разбирался в греческом, и мы с ним обсудили различные понятия. Я преследовал цель привести в движение новую область науки, которая занимается вышеуказанными проблемами. Уже тогда я видел, что существует поразительное сходство между совершенно различными явлениями, например между излучениями лазера и социологическими процессами или эволюцией, и что это должно быть только вершиной айсберга. Правда, в то время я не подозревал, что эта область может оказать влияние на столь многие и отдалённые области исследования, как, например, психология и философия» [1, с. 53].
В отличие от других научных направлений, обычно возникавших на стыке двух наук (например, физической химии, химической физики и даже астроботаники), когда одна наука давала новому направлению предмет, а другая — метод исследования, синергетика опирается, так сказать, на «внутренние точки» наук— на сходство математических моделей, описывающих процессы, происходящие в системах совершенно различной природы; в силу этого синергетика наряду с познанием нового — когнитивной функцией, присущей истинной науке, выполняет, причём весьма естественно, не менее важную коммуникативную функцию, осуществляя «перевод» понятий одной области науки на язык понятий, возможно, весьма далёкой от неё совершенно другой области науки. В этом смысле синергетику, как уже упоминалось выше, с полным основанием можно считать истинной преемницей теории колебаний, которая занимается изучением колебательных процессов в системах различной природы — по словам Л.И. Мандельштама, «говорит на интернациональном языке науки».