Смекни!
smekni.com

Синергетика (стр. 6 из 7)

S-теорема Ю.Л. Климонтовича — критерий относительности упорядоченности открытых систем. (S от английского слова self-organization — самоорганизация.)

КАМ-теория — предложенная в 1950-х годах А.Н. Колмогоровым, В.И. Арнольдом и Юргеном Мозером теория, описывающая регулярное и хаотическое поведение динамических систем.

Реакция Белоусова–Жаботинского — колебательная химическая реакция в гомогенной системе, открытая Б.П. Белоусовым в 1951 г.; A.M. Жаботинский выяснил кинетику реакции, построил её математическую модель и уточнил первоначальную гипотезу Б.П. Белоусова. Реакция Белоусова–Жаботинского породила мощную волну исследований гомогенных химических и биохимических исследований, лёгших в основу теории биологических часов.

Система Тьюринга — математическая модель, состоящая из системы двух дифференциальных уравнений, описывающих реакцию между двумя гипотетическими веществами-морфогенами и диффузию продуктов этой реакции. По мысли Алана Тьюринга, такая модель призвана была объяснить периодичность в строении некоторых животных, например кольчатых червей, и растений.

Модель Тьюринга породила множество аналогов, созданных для описания периодических твердотельных структур и химических реакций. Названия таких моделей строились по единому образцу: название географического пункта, где работают создатели модели, плюс окончание слова осциллятор, например, орегонатор (модель, созданная в университете штата Орегон) или брюсселятор (модель, созданная школой И.Р. Пригожина в Международных институтах химии и физики Сольвэ в Брюсселе).

Брюсселятор — частный случай модели Тьюринга — одно дифференциальное уравнение диффузии с кубическим нелинейным членом, описывающим химическую реакцию, происходящую при тройном столкновении молекул реагирующих веществ, — событии гораздо более редком, чем парное столкновение. Выбор кубической нелинейности, аналогичной нелинейности в предложенной Гейзенбергом теории ферромагнетизма, обусловил успешное применение брюсселятора для описания динамики различных физических систем, но создал определённые трудности при подыскании удовлетворяющей модели химической реакции. Такой реакцией оказалась реакция Чепмена — образование молекул озона O3 в верхних слоях атмосферы.

13. Отказ от описания на уровне траекторий

Каждая из двух «тучек» на горизонте классической науки, о которых упомянул в своих «Балтиморских лекциях» Уильям Томпсон (лорд Кельвин), разрастаясь, превратилась в новую неклассическую науку. Рождение каждой из этих наук повлекло за собой отказ от каких-то классических представлений: квантовая механика — отказ от представления о безграничной делимости энергии (по Планку, электромагнитная энергия могла поглощаться и излучаться только конечными порциями — квантами, а Эйнштейн понял, что электромагнитная энергия может и распространяться только квантами), специальная теория относительности (СТО) — отказ от представления о бесконечной скорости распространения сигнала (согласно СТО, ни один сигнал не может распространяться быстрее света).

Естественно возникает вопрос: к отказу от какого классического представления привело рождение нелинейной науки и, в частности, синергетики? Такое представление действительно есть в классике. Это представление о траектории как о геометрической линии, т.е. по Евклиду, «длина без ширины». Физически описание поведения динамической системы на языке траекторий означало бы, что у нас имеется прибор со столь высокой разрешающей способностью, что он позволяет нам «видеть» геометрическую линию. Разумеется, в действительности разрешающая способность любого прибора конечна, а это означает, что мы можем «видеть» не индивидуальную траекторию, а только целый пучок индивидуальных траекторий, находящихся в трубке, поперечное сечение которой определяется разрешающей способностью прибора. Все траектории внутри пучка для нас неразличимы. Имеет смысл говорить лишь о некотором вероятностном распределении траекторий внутри пучка, причём, по терминологии И.Р. Пригожина и И. Стенгерс, это вероятностное распределение несводимо, т.е. траектории внутри пучка невозможно индивидуализировать, — от распределения вероятностей невозможно перейти к отдельным траекториям, распределение вероятностей несводимо.

Несводимые вероятностные распределения коренным образом изменяют описание динамических систем и даже понимание физических законов.

Вот что говорят об этом И.Р. Пригожин и И. Стенгерс: «Традиционно существовали две формулировки физических законов: одна — в терминах траекторий или волновых функций, другая — в терминах статистических ансамблей. Но такая статистическая формулировка не была несводимой. Она была вполне применима к отдельным траекториям или волновым функциям. Иначе говоря, при статистическом подходе не появлялись новые динамические свойства. В результате необратимое приближение к равновесию традиционно было принято связывать с приближённостью, «крупнозернистостью» описания, а стрелу времени приписывать неполноте нашего знания. Предложенная нами несводимая формулировка порывает с этой ситуацией. Необратимость и вероятность становятся объективными свойствами. Они выражают то обстоятельство, что наблюдаемый нами физический мир не может быть сведён к отдельным траекториям или отдельным волновым функциям. Переход от ньютоновского описания в терминах траекторий или шрёдингеровского описания в терминах волновых функций к описанию в терминах ансамблей не влечёт за собой потери информации. Наоборот, такой подход позволяет включить новые существенные свойства в фундаментальное описание неустойчивых хаотических систем. Свойства диссипативных систем перестают быть только феноменологическими, а становятся свойствами, не сводимыми к тем или иным особенностям отдельных траекторий или волновых функций.

Но существуют классические системы, устойчивые и обратимые во времени. Как мы теперь понимаем, они соответствуют предельным ситуациям, исключительным случаям. В квантовой механике ситуация ещё более сложная, так как нарушение симметрии во времени явно признаётся необходимым для наблюдения квантового мира, т.е. для перехода от амплитуд вероятности к вероятности. В нашей формулировке законов природы характерные (представляющие) ситуации принадлежат к классу неустойчивых хаотических систем, которые мы отождествили с существованием несводимых вероятностных представлений. Это новое определение динамического хаоса включает в себя его обычное определение (в простых ситуациях, например в случае дискретных отображений, оба определения эквивалентны) и допускает обобщение на более сложные ситуации, соответствующие подавляющему большинству случаев, представляющих физический интерес» [20, с. 253–254].

14. Что такое нелинейная динамика?

Итак, мы познакомились с важным разделом нелинейной физики — синергетикой, её основными понятиями и узнали, какое место она занимает в системе современных наук. Богатая свежими физическими и философскими идеями, синергетика использует новый математический аппарат — нелинейную динамику, которая также отличается от классического математического анализа Ньютона и Лейбница. В этом разделе мы постараемся, не вдаваясь в детали, помочь читателю составить общее представление о нелинейной динамике.

Нелинейная динамика — раздел современной математики, который занимается исследованием нелинейных динамических систем.

Под динамической системой условились понимать систему любой природы (физическую, химическую, биологическую, социальную, экономическую и т.п.), состояние которых определяется набором величин, называемых параметрами состояния, или динамическими переменными, такими, что их значения в любой последующий момент времени по определённому правилу получаются из их значений в начальный момент времени. Это правило осуществляет оператор эволюции.

Нелинейная динамика использует при изучении систем нелинейные модели — чаще всего дифференциальные уравнения и дискретные отображения.

Дать точное определение того, что составляет предмет нелинейной динамики, ничуть не легче, чем определить, что составляет предмет теории колебаний. Перефразируя Л.И. Мандельштама («Лекции по теории колебаний»), можно сказать, что «было бы бесплодным педантизмом стараться «точно» определить, какими именно процессами занимается теория колебаний. Важно не это. Важно выделить руководящие идеи, основные общие закономерности».

Следует подчеркнуть, что нелинейной называется теория, в частности нелинейная теория динамических систем, или нелинейная динамика, использующая нелинейные математические модели. Но нелинейная теория не обязательно ограничивается изучением нелинейных явлений или закономерностей.

Мир нелинейных закономерностей, или функций, так же как и стоящий за ним мир нелинейных явлений, страшит, покоряет и неотразимо манит своим неисчерпаемым разнообразием. Здесь нет места чинному стандарту, здесь безраздельно господствует изменчивость и буйство форм. То, что точно схватывает и переходит характерные особенности одного класса нелинейных функций, ничего не говорит даже о простейших особенностях типичного представителя другого класса нелинейных функций. Геометрический образ нелинейной функции — кривая на плоскости, искривлённая поверхность или гиперповерхность в пространстве трёх или большего числа измерений. На одинаковые приращения независимой переменной одна и та же нелинейная функция откликается по-разному в зависимости от того, какому значению независимой переменной придаётся приращение. Почти полным «безразличием» к изменению одних и повышенной, острой чувствительностью к изменению других значений независимой переменной нелинейные функции поразительно контрастируют с линейными функциями. Любая линейная функция откликается на приращение независимой переменной одним и тем же приращением своего значения, в какой бы части области определения ни находилось то значение независимой переменной, которой придаётся приращение. Именно здесь и проходит демаркационная линия между миром линейных и нелинейных явлений и зависимостей.