Смекни!
smekni.com

Синергетика (стр. 3 из 7)

Динамическая система — система любой природы, состояние которой эволюционирует во времени.

Параметры (переменные) состояния — параметры (переменные), набор значений которых однозначно определяет состояние системы.

Управляющие параметры — те из параметров состояния, изменение которых позволяет изменять состояния системы (управлять состоянием).

Параметры порядка — функции параметров состояния, значения которых, как и значения самих параметров порядка, определяют состояние системы.

Принцип подчинения — принцип утверждающий, что существуют функции параметров состояния (параметры порядка), которые, как и сами параметры состояния, определяют состояние системы.

Число параметров порядка, как правило, много меньше числа параметров состояния. Переход от параметров состояния к параметрам порядка позволяет осуществлять сжатие информации о системе.

Круговая причинность — принцип, утверждающий, что существуют функции, обратные тем, которые задают параметры порядка в зависимости от значений параметров состояния. Круговая причинность делает сжатие информации (см. п. 5) в синергетике обратимым.

Линейная система — система, удовлетворяющая принципу суперпозиции состояний, если в системе существуют режимы u1 и u2, то существует и режим αu1 + βu2 — произвольная линейная комбинация (суперпозиция) состояний u1 и u2.

Теорема единственности — теорема, доказанная для линейных систем: при данных начальных или краевых условиях в системе существует только один режим.

Нелинейная система — система, воздействующая на себя; состояние на выходе системы служит её начальным состоянием. Связь выхода системы с её входом называется обратной связью. Для нелинейных систем — систем с обратной связью — принцип суперпозиции не выполняется.

Устойчивость (по Ляпунову) — система называется устойчивой по Ляпунову, если режимы, мало отличающиеся (на ε) в начальный момент времени отличаются на конечную величину (ε) в любой последующий момент времени.

Эффект бабочки — присущая нелинейным системам чувствительная зависимость от начальных условий (неустойчивость по Ляпунову), режимы, мало отличающиеся в начальный момент времени, в последующем экспоненциально быстро расходятся. (Название эффекта заимствовано из рассказа «И грянет гром» Брэдбери.)

Горизонт событий (предсказуемость) — временной интервал, на протяжении которого поведение динамической системы предсказуемо, т.е. детерминировано.

Случайность — строго математического определения случайности не существует даже для последовательности нулей и единиц.

Случайность по фон Мизесу — по мере продвижения по последовательности доля нулей и единиц стремится к 1/2.

Случайность по А.Н. Колмогорову — последовательность сложно устроена, если её описание не проще самой последовательности. Случайность по Колмогорову эквивалентна сложноустроенности.

Случайность по Мартин-Лёфу — последовательность нулей и единиц случайна, если она типична, т.е. не содержит никаких «особых примет» — не принадлежит малому множеству последовательностей с особыми примерами.

Хаос детерминированный — сложный режим, возникающий в нелинейной динамической системе вследствие её внутренней неустойчивости — система действует не как усилитель внешнего шума, а как генератор хаотического режима.

Меры хаоса — числовые характеристики, позволяющие (по различным критериям) сравнивать хаотические режимы динамических систем, выяснять, какой из двух хаотических режимов хаотичнее.

Самоорганизация — спонтанное (без воздействия извне) возникновение в динамической системе более сложных по сравнению с ранее существовавшими структур или состояний. Иногда синергетику называют теорией самоорганизации.

7. Возникновение и эволюция понятия «самоорганизация»

Понятие «самоорганизация» возникло в 1970-х годах — первоначально как собирательное название многочисленных явлений, наблюдавшихся в сложных системах, изучением которых занимается синергетика. Осознание центральной роли самоорганизации в круге проблем, изучаемых синергетикой, равно как и понимание того, что и как происходит в системе при возникновении новых пространственных, временных и пространственно-временных структур, пришло позже. Первоначально исследователи ограничивались «комплектованием зоопарка»— составлением более или менее подробных перечней явлений самоорганизации в системах различной природы. И лишь по завершении периода «первоначального накопления» синергетику стали называть направлением, занимающимся изучением самоорганизации [2].

На начальном этапе внимание исследователей было почти всецело сосредоточено на том обстоятельстве, что самоорганизация, как о том свидетельствует само название этого явления, происходит без какого бы то ни было воздействия извне. Предыдущее состояние системы утрачивает устойчивость, и вместо него появляется («самоорганизуется») новое, первоначально устойчивое состояние, которое в ходе дальнейшей эволюции также может потерять устойчивость и, в свою очередь, уступить место новому состоянию. Важная особенность самоорганизации — сжатие информации — оставалась незамеченной. Между тем сжатие информации при самоорганизации происходит весьма специфическим образом. Множество параметров состояния отходит на задний план, уступая место гораздо более малочисленным параметрам порядка, характеризующим самообразовавшиеся новые структуры. Можно сказать, что самоорганизация основополагающих принципов синергетики — принцип подчинения.

Анализ обширного эмпирического материала позволил сделать неожиданное открытие — обнаружить своего рода «структурный базис» эволюции — набор простейших структур, или паттернов, из которых по определённым сценариям система синтезирует более сложные структуры. Это открытие оказалось тем более неожиданным, что самоорганизующиеся системы нелинейные, и принцип суперпозиции — принципиальная отличительная особенность линейных систем — в них не действует.

Разумеется, этим неожиданности, подстерегавшие исследователей нелинейных систем, не исчерпывались. Выяснилось, что вопреки традиционным представлениям о хаосе как о синониме беспорядка хаос может обладать тонкой и сложной организацией.

8. Фракталы

Ярким примером хаоса, наделённого тонкой структурой, могут служить самоподобные и самоаффинные объекты, получившие с лёгкой руки Бенуа Мандельброта название фракталы и мультифракталы.

В трёх своих книгах «Фрактальные объекты: форма, случай и размерность» (изд-во «Фламмарион», 1975), «Фракталы: форма, случай и размерность» (изд-во «Фримен», 1977), «Фрактальная геометрия природы» (изд-во «Фримен», 1977), Бенуа Мандельброт предложил изумлённому научному миру, по существу, новую неевклидову геометрию — неевклидову не в смысле отказа от аксиомы о параллельности, принятой в традиционной евклидовой геометрии, а замены её другой аксиомой, как это было сделано в геометрии Н.И. Лобачевского и Я. Бойяи, а в смысле отказа от незримо присутствовавшего в «Началах» Евклида требования гладкости; геометрии — в соответствии с определением геометрии как науки об инвариантах группы преобразований, данным в 1872 г. в «Эрлангенской программе» Феликса Клейна, — фрактальная геометрия занимается изучением объектов, инвариантных относительно самоаффинных и самоподобных преобразований, образующих группы.

Бенуа Мандельброт создал неевклидову геометрию негладких, шероховатых, изъеденных причудливыми ходами, порами, трещинами и отверстиями, извилистых и т.п. объектов, бывших до этого своего рода математическими критериями. По молчаливому уговору, ранее такие объекты исключались из рассмотрения в пользу более «благообразных» усреднённых, сглаженных отполированных объектов. Между тем именно такие неправильные объекты составляют большинство объектов, встречающихся в природе. Гордые слова Галилея «Философия записана в этой огромнейшей книге Природы, которая всегда открыта перед нами (я говорю о Вселенной), но понять написанное невозможно, пока не изучишь язык и не распознаешь письмена, которыми она написана. А написана она на математическом языке, и письменами её являются треугольники, круги и другие геометрические фигуры...», из его сочинения «Пробирных дел мастер» ныне надлежит трактовать так: «...треугольники, круги, фракталы и другие геометрические фигуры...»

Сам Бенуа Мандельброт охарактеризовал созданную им теорию как морфологию бесформенного: «Почему геометрию часто называют «холодной» и «сухой»? Одна из причин заключается в её неспособности описать форму облака, горы, береговой линии или дерева. Облака — не сферы, горы — не окружности, древесная кора — не гладкая, молния распространяется не по прямой.

В более общем плане я утверждаю, что многие объекты в Природе настолько нерегулярны и фрагментированы, что по сравнению с Евклидом — термин, который в этой работе означает всю стандартную геометрию, — природа обладает не просто большой сложностью, а сложностью совершенно иного уровня. Число различных масштабов длины природных объектов для всех практических целей бесконечно велико». Сверхсложная геометрия фрактальных сред накладывает свой отпечаток на разыгрывающиеся в них процессы. На фракталах по-новому, чем в традиционных сплошных средах, происходит диффузия, протекают химические реакции, происходит рассеяние акустических и электромагнитных волн. Но фракталы с их самоподобной и самоаффинной структурой служат регулярными моделями случайных (хаотических) сред — своего рода аналогом вполне интегрируемых систем классической механики. (Хотя вполне интегрируемые системы являются скорее исключениями, чем правилом, все учебники аналитической динамики заполнены именно вполне интегрируемыми системами: рассмотрение их позволяет развить интуицию, столь необходимую для анализа общих, не вполне интегрируемых систем. Фракталы с их тонкой самоаффинной и самоподобной структурой позволяют развить интуицию, необходимую для работы со случайными средами.)