Смекни!
smekni.com

Четыре столетия телескопов (стр. 1 из 3)

Голландские трубы

Алексей Левин

Крупнейшие нынешние телескопы - гиганты, оснащенные высокотехнологичными детекторными комплексами и устройствами для коррекции световых потоков, однако их принципиальные оптические схемы по большей части были изобретены еще в XVII столетии. В этом смысле телескоп - прибор весьма консервативный, несмотря на суперсовременную оснастку вроде гигапиксельных цифровых матриц, мультизрачковых спектрографов высокого разрешения и компьютерной корректировки атмосферных искажений волнового фронта. Тем не менее за четырехсотлетний срок оптические телескопы преодолели гигантский путь.

Самые первые телескопы были копиями подзорных труб, изобретенных голландскими мастерами в начале XVII века. Они имели всего две линзы - выпуклый длиннофокусный объектив и вогнутый короткофокусный окуляр. Такая труба дает прямое, то есть неперевернутое изображение, которое имеет максимальную четкость, если расстояние между окуляром и объективом (длина трубы) равняется разности их фокусных расстояний (увеличение трубы равно отношению фокусных расстояний обьектива и окуляра). Первый телескоп Хэрриота обеспечивал шестикратное увеличение. Позже ученый изготовил еще несколько труб - вплоть до 20-30-кратных. С их помощью он провел детальные наблюдения солнечных пятен и довольно точно определил продолжительность солнечных суток. К сожалению, Хэрриот не считал нужным публиковать свои многочисленные научные работы, которые могли прославить его еще при жизни. Он выполнил фундаментальные алгебраические исследования, сильно опередившие его время, а также открыл закон преломления света задолго до того, как это сделали Виллеброд Снеллиус и Рене Декарт (не исключено, что этот закон был известен багдадскому ученому X века Ибн Сахлу; во всяком случае, на это указывает один из чертежей в его недавно найденном трактате "О сжигающих зеркалах и линзах"). О том, что Хэрриот был первым астрономом-телескопистом, мало кто знает и поныне. Впрочем, Хэрриот недолго оставался монополистом. Осенью 1609 великий итальянец Галилео Галилей и немецкий астроном Симон Мариус направили в небеса свои инструменты.

26 июля 1609 года английский ученый-универсал Томас Хэрриот направил подзорную трубу на Луну и зарисовал ее поверхность. Эту дату можно считать днем рождения оптической астрономии.

ТЕЛЕСКОПЫ ЗАНИМАЮТ ОСОБОЕ МЕСТО СРЕДИ НАУЧНОГО ИНСТРУМЕНТАРИЯ.

До начала XX в. наука предприятием камерным, приборы для любого эксперимента умещались на 1-2х лабораторных столах, но телескопы еще в далекой своей юности выросли до десятков метров.

Мариус пользовался готовой трубой голландского производства, в то время как Галилей освоил шлифовку линз и лично изготовил четыре трубы, причем считается, что самая большая обеспечивала более чем 30-кратное увеличение. В марте 1610 года он выпустил книгу Sidereus nuncius, где рассказал о телескопических наблюдениях Луны, Юпитера и Млечного пути (в частности, в январе он открыл четыре крупнейших спутника Юпитера, хотя позднее Мариус утверждал, что сделал это несколько раньше). Именно из этого труда ученые (да и вся образованная публика) узнали о возможностях, которые открыли телескопы. Так что оптическая астрономия как новое направление в науке о небесных явлениях началась именно с Галилея. В честь юбилея этого великого события мы сейчас и отмечаем Международный астрономический год.

Конструкция Кеплера

У труб голландской конструкции имелись слабые места - низкая яркость изображения и узкое поле зрения, которое еще больше сужалось при возрастании увеличения (что было прямым следствием применения вогнутых рассеивающих окуляров). Как исправить эти недостатки, догадался первооткрыватель законов планетных движений Иоганн Кеплер. Свою идею он изложил в труде Dioptrice ("Диоптрика"), увидевшем свет в 1611 году. Кеплер предложил использовать в качестве окуляра выпуклую линзу, отодвинутую от фокуса объектива на длину собственного фокусного расстояния - причем не по направлению к объективу, а прочь от него. Длина такого телескопа равна сумме (а не разности, как у "голландского" предшественника) фокусных расстояний объектива и окуляра, а формула для увеличения, естественно, остается той же самой. Он дает перевернутое изображение, но для наблюдателей небес это не представляет никаких затруднений. Кеплеровкая конструкция обеспечивает расширенное поле зрения и большую яркость - а это огромные плюсы.

В качестве объектива используется собирающая линза, а в качестве окуляра - рассеивающая. Такой телескоп дает неперевернутое изображение, но имеет малое поле зрения и низкую яркость.

РЕФРАКТОР ГАЛИЛЕЯ

В 1611 году Кеплер предложил свою схему рефрактора - с двумя собирающими линзами, одна из которых служила объективом, а вторая окуляром. Такая схема имеет большее поле зрения по сравнению с галилеевской и дает более яркое, хотя и перевернутое изображение.

РЕФРАКТОР КЕПЛЕРА

Первый такой телескоп сделал в 1613 году замечательный немецкий геометр, астроном и физик Кристоф Шейнер, один из самых блестящих ученых, которых подарил миру орден иезуитов. В астрономическую практику кеплеровские трубы вошли лишь в конце 1630-х годов. Шейнер внес еще одно важное усовершенствование. Он догадался, что телескоп можно наводить на нужную точку небосвода поворотом вокруг двух взаимно перпендикулярных осей, одна из которых ориентирована под прямым углом к плоскости экватора, и в 1620-х предложил прообраз экваториальной монтировки, что сильно упростило компенсацию суточного вращения Земли. Совершенно новым принцип не был и тогда (в 1585 году датский астроном Тихо Браге именно так установил свой крупнейший угломерный инструмент - большую армиллярную сферу), однако Шейнер первым использовал его для нацеливания телескопа. Систему усовершенствовал другой астроном-иезуит Кристофер Гринбергер, а в 1670-х Роберт Гук предложил поворачивать телескоп с помощью часового механизма.

Монтировкой называется опорная система телескопа, позволяющая фиксировать его в определенной позиции. Монтировки различаются по расположению взаимно перпендикулярных осей, вокруг которых поворачивается труба во время нацеливания. Монтировки бывают двух основных типов - экваториальная и альт-азимутальная. У экваториальной одна из осей вращения трубы телескопа параллельна земной оси (и, следовательно, ортогональна плоскости экватора, откуда и название). Эта ось называется часовой, или полярной, а другая - осью склонений. Для компенсации вращения Земли достаточно вращать телескоп вокруг полярной оси, совершая полный оборот за 23 часа 56 минут (то есть за одни звездные сутки). В альт-азимутальной монтировке тоже используются ортогональные оси вращения - вертикальная и горизонтальная. Основной недостаток этой конструкции в том, что стабилизация телескопа достигается за счет вращения вокруг обеих осей с переменными скоростями. В наши дни компьютеры запросто справляются с этой задачей, и поэтому все крупные современные телескопы используют, как правило, альт-азимутальную монтировку.

К середине XVII века телескопы-рефракторы значительно усложнились. Богемский монах-капуцин Антон Мария Ширлеус де Рейта изобрел телескоп с четырьмя выпуклыми линзами (объектив, промежуточная линза и двух-линзовый окуляр), который расширил поле зрения по сравнению с двухлинзовой кеплеровской трубой. Ширлеус передал свои секреты аугсбургскому мастеру Иоганну Визелю, который изготавливал и продавал телескопы длиной более 4 м. Через десяток лет этот рекорд побил англичанин Ричард Рив, чьи трубы по длине зашкаливали за 10м - высота трехэтажного дома. Данцигский бургомистр Ян Гевелий (процветающий пивовар, а по совместительству большой поклонник астрономии) строил для своей обсерватории инструменты и покрупнее, среди них 45-метровый телескоп с составным светопроницаемым тубусом, подвешенный на высоком столбе. А в конце столетия великий голландский астроном и физик Христиан Гюйгенс со своим братом Константином строили уж вовсе непомерные беструбные (так называемые воздушные) телескопы длиной до 70 м.

Ян Гевелий (1611-1687), польский пивовар и астроном из Гданьска, основатель селенографии, автор первой точной карты Луны и звездного атласа, строил для своих астрономичеких наблюдений гигантские - до 45 м в длину - "воздушные" (без корпуса) трубы-рефракторы.

ДЛИННЫЙ ГЛАЗ

В главе о ранних рефракторах невозможно не упомянуть еще одно изобретение, сделанное уже в XVIII веке. В 1729 году английский адвокат и астроном-любитель Честер Мур Холл нашел способ практически свести к нулю хроматическую аберрацию - настоящий бич тогдашних рефракторов (именно для борьбы с ней и строили телескопы-исполины со сверхдлиннофокусными объективами). Холл придумал объектив, скомпонованный из пары линз - выпуклой из флинтгласа, оптического стекла с высоким показателем преломления и низкой дисперсией, и вогнутой из кронгласса, с низким показателем преломления и средней дисперсией (в теории эту идею еще в 1695 году предложил оксфордский профессор математики Дэвид Грегори, о чем Холл, возможно, знал). Изготовление подобных объективов не без конфликтов прибрала к рукам первая в мире оптическая фирма, основанная лондонцем Джоном Долландом и его сыном Питером (который в 1763 году изобрел полностью ахроматический трехлинзовый объектив).

Пришествие зеркал

Судя по всему, первый зеркальный телескоп в 1616 году пытался сделать римский профессор математики, иезуит Никколо Зуччи. Он взял вогнутое бронзовое зеркало, поместил в его фокус вогнутую линзу... и не увидел ровно ничего. В принципе это устройство могло сработать, будь у Зуччи зеркало хорошей шлифовки, но таких еще просто не существовало. В 1630-х годах итальянец Бона-вертура Кавальери и француз Марин Мерсенн (тоже слуги церкви) опубликовали труды с глубоким теоретическим анализом возможностей зеркальных оптических приборов, но не попытались их построить. Во второй половине XVII века дела пошли быстрее. В 1661 году шотландский математик Джеймс Грегори (родной дядя вышеупомянутого Дэвида) предложил вполне работоспособную конструкцию рефлектора. Свет от удаленного объекта падает на основное фокусирующее зеркало с поверхностью в форме параболоида вращения. Отраженные лучи попадают на небольшое - и тоже вогнутое! - вспомогательное зеркало с эллипсоидальной поверхностью, расположенное перед фокусом параболического рефлектора. Отразившись во второй раз, свет проходит сквозь отверстие в центре главного зеркала и фокусируется выпуклой окулярной линзой. В идеале такая конфигурация дает прямое изображение с нулевой сферической аберрацией; хроматическая имеет место, но в малой степени (она легко устраняется ахроматическим окуляром, но тогда его еще не придумали). Грегори даже заказал Ричарду Риву зеркала для такого телескопа, но тот не смог добиться нужного качества.