Смекни!
smekni.com

Система дифференциальных уравнений с постоянными коэффициентами (стр. 1 из 26)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РФ

НАБЕРЕЖНОЧЕЛНИНСКИЙ ГОСУДАРСТВЕННЫЙ ПЕДАГОГИЧЕСКИЙ ИНСТИТУТ

Математический факультет

Кафедра математического анализа

Козлова Любовь Владимировна

Система дифференциальных уравнений с постоянными коэффициентами

/дипломная работа/

Работа завершена:

Студентка группы 721

Козлова Л.В.

(подпись)

Рекомендуется к защите:

Научный руководитель, профессор

Хайруллин Р.С.

(подпись)

Допускается к защите:

Зав. кафедрой, профессор

Габбасов Н.С.

(подпись)

Набережные Челны

2002


СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА I. НЕКОТОРЫЕ СВЕДЕНИЯ ИЗ АНАЛИЗА

§ 1. Дифференциальное уравнение первого порядка

§ 2. Формулировка теоремы существования и единственности

§ 3. Сведение обшей системы дифференциальных уравнений к нормальной

§ 4. Некоторые сведения о линейных дифференциальных уравнениях

ГЛАВА II. Линейные уравнения с постоянными Коэффициентами.

§ 5. Линейное однородное уравнении с постоянными коэффициентами (случай простых корней)

§6. Линейное однородное уравнение с постоянными коэффициентами (случаи кратных корней)

§ 7. Линейное неоднородное уравнение с постоянными коэффициентами

§ 8. Метод исключения

§9. Нормальная линейная однородная система с постоянными коэффициентами

§ 10. Автономные системы дифференциальных уравнений и их фазовые пространства

§ 11. Фазовая плоскость линейной однородной системы с постоянными коэффициентами

ГЛАВА III. теоремы существования

§ 12. Доказательство теоремы существования и единственности для одного уравнения

§13. Доказательство теоремы существования и единственности для нормальной системы уравнений

§ 14. Понятие о теории устойчивости Ляпунова. Поведение траектории дифференциального уравнения в окрестности особой точки

ГЛАВА IV. ПРАКТИЧЕСКИЯ СХЕМА РЕШЕНИЯ СИСТЕМЫ ДИФФЕРЕНЦАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

ПРИЛОЖЕНИЕ


ВВЕДЕНИЕ

Данная работа посвящена теме: «Системы дифференциальных уравнений с постоянными коэффициентами»

Многие процессы химической технологии описываются системами дифференциальных уравнений - начиная от кинетических исследований и заканчивая химическими технологическими процессами. В основу математических способов описания процессов положены системы дифференциальных уравнений и системы линейных алгебраических уравнений. Эти уравнения описывают материальные и тепловые балансы объектов химической технологии, а так же структуры потоков технических веществ в этих аппаратах.

Системы обыкновенных дифференциальных уравнений с постоянными коэффициентами представляют собой большой и важный класс обыкновенных дифференциальных уравнений, решающихся до конца при помощи элементарных функций. Ввиду того, что решение этих уравнений принципиально не представляет больших трудностей, часто, считают, что они не имеют сколько-нибудь значительного интереса для теории, и в учебниках им обычно отводит место простого примера к общей теория линейных уравнений. Между тем линейные уравнения с постоянными коэффициентами имеют многочисленные технические применения, так как работа весьма многих технических объектов достаточно адекватным образом описывается этими уравнениями. Именно технические применения выдвигают ряд новых задач теоретического характера в теории линейных уравнений с постоянными коэффициентами. Решению этих теоретических задач посвящено немало работ, имеющих прикладную направленность.

Данная работа состоит из четырех глав.

Первая глава посвящена в первую очередь определению тех понятий, которые будут изучаться в дальнейшем. Что такое система обыкновенных дифференциальных уравнений, что называется ее решением и как много этих решении существует - таковы главные вопросы, на которые дается ответ в этой главе. Количество решений определяется теоремами существования и единственности, которые здесь не доказываются, а только формулируются. Доказательство этих и ряда других теорем того же типа дается в третьей главе, а до этого сформулированные в первой главе теоремы многократно используются, чем выясняется их значение.

Во второй главе используются обычные для инженерной практики операционные обозначения, которые очень удобны для решения систем уравнений методом исключения. Кроме того, в эту главу включено исследование фазовой плоскости линейных систем второго порядка, которому предшествует изучение фазовых пространств автономных систем. Фазовые пространства автономных систем также находят важные приложения в технике.

В третьей главе доказываются теоремы существования и единственности сформулированные в первой главе, также здесь дается понятие о теории устойчивости Ляпунова.

Работа очень многих механических, электрических и другого вида устройств (машин, приборов и т.п.) описывается системами обыкновенных дифференциальных уравнений. Система обыкновенных дифференциальных уравнений имеет всегда бесконечное множество решений, и для задания одного определенного решения нужно указать его начальные значения. Для полного понимания какого-либо устройства желательно иметь хорошее представление о фазовом пространстве системы уравнений, описывающей работу этого устройства. При этом важнее всего знать все устойчивые решения этой системы уравнений.

В четвертой главе данной решена система пяти дифференциальных уравнений с постоянными коэффициентами и исследована устойчивость решения этой системы уравнений.


ГЛАВА I. НЕКОТОРЫЕ СВЕДЕНИЯ ИЗ АНАЛИЗА

§ 1. Дифференциальное уравнение первого порядка

Дифференциальными уравнениями называются такие уравнения, в которых неизвестными являются функции одного или нескольких переменных, причем в уравнения входят не только сами функции, но и их производные. Если неизвестными функциями являются функции многих переменных, то уравнения называются уравнениями в частных производных, в противном случае, т. е. при рассмотрении функций только одного независимого переменного, уравнения называются обыкновенными дифференциальными уравнениями.

Так как в ряде физических применений независимым переменным, от которого зависят неизвестные искомые функции, является время, которое принято обозначать через t, то всюду в дальнейшем независимое переменное будет обозначаться через t. Неизвестные функции будут обозначаться через x, y, z и т. д. Производные функции по t будут, как правило, обозначаться так:

,
и т. д. В тех случаях, когда это неудобно или невозможно, мы будем указы­вать порядок производной верхним индексом в скобках; например,
.

В первую очередь мы займемся рассмотрением одного диф­ференциального уравнения первого порядка, т. е. уравнения, в которое, входит лишь первая производная неизвестной функции. Уравнение это может быть записано в виде:

(1)

Здесь t - независимое переменное, x - его неизвестная функция,

- ее производная, а F - заданная функция трех переменных. Функция F может быть задана не для всех значений ее аргументов; поэтому говорят об области B задания функции F. Здесь имеется в виду множество В точек координатного пространства трех пере­менных
. Решением уравнения (1) называется такая функ­ция
независимого переменного t, определенная на некотором интервале
(случаи
не исключаются), что при подстановке ее вместо x в соотношение (1) мы получаем тождество на всем интервале
. Интервал
назы­вается интервалом определения решения
. Очевидно, что под­становка
в соотношение (1) возможна лишь тогда, когда функция
на всем интервале
имеет первую производную (и, в частности, непрерывна). Для того чтобы подстановка
в соотношение (1) была возможна, необходимо также, чтобы при произвольном значении переменного t из интервала
точка с координатами
принадлежала множеству В, на котором определена функция F.

Соотношение (1) связывает три переменные величины

. В не­которых случаях оно определяет переменное
как однозначную неявную функцию независимых переменных
. В этом случае диф­ференциальное уравнение (1) равносильно дифференциальному урав­нению вида