Смекни!
smekni.com

Система дифференциальных уравнений с постоянными коэффициентами (стр. 24 из 26)

Решение неустойчиво.

X. Пусть

. Тогда

(20)

Откуда видно, что

и
при
. Решение неустойчиво.

Чтобы дать общий критерий устойчивости решения системы (4), поступим следующим образом.

Запишем корни характеристического уравнения в форме комплексных чисел:

(в случае действительных корней

и
).

Возьмем плоскость

комплексной переменной и будем изображать корни характеристического уравнения точками на этой плоскости. Тогда на основании рассмотренных случаев условие устойчивости решения системы (4) можно сформулировать следующим образом.

Если ни один из корней

характеристического уравнения (6) не лежит справа от мнимой оси, причем хотя бы один корень отличен от нуля, то решение устойчиво; если же хотя бы один корень лежит справа от мнимой оси или оба корня равны нулю, то решение неустойчив (рис.19).

А.М. Ляпунов исследовал вопрос об устойчивости решений систем уравнений при довольно общих предположениях относительно вида этих уравнений.

В теории колебаний часто рассматривают уравнение

(21)

Обозначим

(22)

Тогда получаем систему уравнений

(23)

Фазовой плоскостью для этой системы будет плоскость

. Траектории на фазовой плоскости дают геометрическое изображение зависимости скорости
от координаты х и наглядно качественно характеризуют изменение х и
. Если точка х = 0,
= 0 является особой точкой, то она определяет положение равновесия.

Так, например, если особая точка системы уравнений есть центр, т. е. Траектории на фазовой плоскости представляют собой замкнутые линии, окружающие начало координат, то движения определяемые уравнением (21), - незатухающие колебательные движения. Если особая точка фазовой плоскости есть фокус (при этом

при
), то движения, определяемые уравнением (21), - затухающие колебания. Если особая точка есть узел или седло (и это единственная особая точка), то
при
. В этом случае движущаяся материальная точка уходит в бесконечность.

Если уравнение (21) линейное вида

, то система (23) имеет вид

Это система вида (4). Точка х = 0,

= 0 есть особая точка, она определяет положение равновесия. Отметим, что переменная ч – не обязательно механическое перемещение точки. Она может иметь различный физический смысл, например, обозначать величину, характеризующую электрические колебания.

ГЛАВА IV. ПРАКТИЧЕСКИЯ СХЕМА РЕШЕНИЯ СИСТЕМЫ ДИФФЕРЕНЦАЛЬНЫХ УРАВНЕНИЙ С ПОСТОЯННЫМИ КОЭФФИЦИЕНТАМИ

Найти общее решение системы дифференциальных уравнений.

(1)

Решение. Будем искать частное решение системы в следующем виде:

(2)

Требуется определить постоянные

и k так, чтобы функции
удовлетворяли системе уравнений (1). Подставляя их в систему (1), получим

,

,

,

.

Сократим на

. Перенося все члены в одну сторону и собирая коэффициенты при
, получим систему уравнений

(3)

Выберем

и k такими чтобы удовлетворялась система (3). Эта система есть система линейных однородных алгебраических уравнений относительно
. Составим определитель системы (3):

(4)

Нетривиальные решения (2) мы получим только при таких k , при которых определитель (4) обращается в ноль. Мы приходим к уравнению пятого порядка для определения k:

,

или

.

Находим корни этого уравнения, используя математическую программу Mach Cad

Для каждого корня

(i=1, 2, 3, 4, 5) напишем систему (3) и определим коэффициенты
. Можно показать, что один из них произвольный, его можно считать равным единице.

Для корня

составим систему (3):

Пусть

=1, тогда получаем систему:

Решим эту систему с помощью программы реализующей метод Гаусса (см. приложение.)

Программа решения систем линейных уравнений по методу Гаусса

Введите порядок матрицы системы (max. 10)

> 4

Введите расширенную матрицу системы

A 1 2 3 4 b

1 8.6 3 0 1 1

2 3 4.6 3 0 -2

3 -8 0 -1.4 3 7

4 4 -6 9 -6.4 1

Результат вычислений по методу Гаусса

1 = 2.4834281139E-01

2 = -1.6215428632E+00

3 = 1.5713562455E+00

4 = 3.7288804116E+00

Таким образом, используя формулу (2) получаем для корня

решение системы (1):

Для корня

составим систему (3):

Пусть

=1, тогда получаем систему:

Решим эту систему с помощью программы реализующей метод Гаусса (см. приложение.)

Программа решения систем линейных уравнений по методу Гаусса

Введите порядок матрицы системы (max. 10)

> 4

Введите расширенную матрицу системы

A 1 2 3 4 b

1 0.3 3 0 1 1

2 3 -3.7 3 0 -2

3 -8 0 -9.7 3 7

4 4 -6 9 -14.7 1


Результат вычислений по методу Гаусса

1 = 1.2357323071E+01

2 = 5.8924432138E-01

3 = -1.2297255075E+01

4 = -4.4749298856E+00