Смекни!
smekni.com

Функция многих переменных (стр. 9 из 12)

2)

=
- однородная функция нулевого измерения.

Уравнение y’=

называется однородным дифференциальным уравнением первого порядка, если функция
является однородной функцией нулевого измерения, то есть, если

(7.2)

Очевидно, уравнение вида

будет однородным тогда и только тогда, когда функции Р(х,у) и Q(х,у), будут однородными функциями одного и того же измерения. Например, уравнение

однородное. Считая, в соотношении (7.2)

, получим

Поэтому можно дать ещё одно определение однородного уравнения: однородным дифференциальным уравнением называется уравнение вида

(7.3)

Применим в уравнении (7.3) подстановку

,
,

Тогда получим уравнение с разделяющимися переменными

,

которое всегда интегрируется в квадратурах:

,

.

После интегрирования надо сделать обратную замену, то есть вместо и нужно подставить

Вывод. Однородные дифференциальные уравнения первого порядка всегда сводятся к уравнениям с разделяющимися переменными подстановкой

,
.

Пример 7.6. Найти общее решение уравнения

Решение. Применим подстановку

,
. Тогда получим

,

,
,

,
,
.

Пример 7.7. Решить задачу Коши

, у(1)=2.

Решение. Поскольку обе функции

однородные измерения два, то данное уравнение однородное. Запишем его в виде

и применим подстановку

,
. Тогда получим

,

,
,
.

Из начального условия найдём постоянную интегрирования:

Подставив найденное значение С в общее решение, получим решение задачи Коши:

Лекция 16. Тема – Уравнения Бернулли. Комплексные числа. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

План.

1.Линейные дифференциальные уравнения первого порядка. Уравнения Бернулли.

2. Комплексные числа.

3. Линейные однородные дифференциальные уравнения второго порядка с постоянными коэффициентами.

1. Линейным дифференциальным уравнением первого порядка называется уравнение вида

(7.4)

где

- известные функции переменной х.

Термин «линейное уравнение» поясняется тем, что неизвестная функция у и её производная у’ входят в уравнение в первой степени, то есть линейно.

Линейное дифференциальное уравнение первого порядка всегда интегрируемо в квадратурах, поскольку его можно всегда свести к двум уравнениям с разделяющимися переменными таким образом (методом Бернулли).

Будем искать решение уравнения (7.4) в виде произведения

(7.5)

где

- неизвестные функции х. Находя производную

и подставляя значение у и у’ в уравнение (7.5), получим

(7.6)

Выберем функцию

так, чтобы выражение в скобках равнялось нулю. Для этого надо решить уравнение с разделяющимися переменными.

Решая его, находим

. (7.7)

Постоянную интегрирования в выражении (7.7) не пишем, поскольку нам достаточно найти только какую-нибудь одну функцию

, которая преобразовывает в ноль выражение в скобках в уравнении (7.6).

Подставляя (7.7) в (7.6), получим

(7.8)

Подставляя (7.7) и (7.8) в (7.5), найдём общее решение уравнения (7.4):

(7.9)

Замечание. На практике помнить формулу (7.9) не обязательно: достаточно лишь помнить, что линейные дифференциальные уравнения первого порядка, а также уравнения Бернулли, решаются методом Бернулли с помощью подстановки

.

Уравнением Бернулли называется уравнение вида

где

- известные функции х,
.

2.Комплексным числом называется выражение

, (7.10)

где х, у – действительные числа, а символ i– мнимая единица, которая определяется условием

. При этом число х называется действительной частью комплексного числа z и обозначается
, а у мнимой частью z и обозначается
(от французских слов: reelдействительный, imaginare мнимый). Выражение (7.10) называется алгебраической формой комплексного числа.

Два комплексных числа

и
, которые отличаются только знаком мнимой части, называются сопряжёнными.