Смекни!
smekni.com

Аддитивные проблемы теории чисел (стр. 2 из 5)

Œ º æŁ Ł æŒ º º Œ ºŁ æ æ º ŁØ ª Łæº æ Ø ı æ ßı Łæ º. ¨ Ø ºß æº , Œ æ Æ º ł

Łæº æ æ ı æ ßı Łæ º. - Ł Œ ØłŁı æ Ł ŁØ æ Ø ŁŒŁ. ¨. . ´Ł ª ºŁº łŁ Ł æ ø æ Æ º ÆøŁı . ˙ ÆŁ ŁŁ ª Łæº æ ı æ ßı ø ł .

1.2.1 ( Œ Łª Ł æŒŁı æ . ( ¨. . ´Ł ª ) ˛ Ł Ł æ ßı æŁº ßı Ł ÆøŁı ºŁ Ł æŒ Ø ŁŁ Łæ º Łª Ł æŒŁı æ Æߺ æ ¨. . ´Ł ª ß . ªŁ ƺ ß ºŁ Ł æŒ Ø

ŁŁ Łæ º º æ ºŁ æ ߌ Œ ßı æ æº ª ßı Ł

cosF(x1,...,xn) + isinF(x1,...xn),

ª F(x1,...,xn) Øæ

Ł º º Łæº Œ Ł . ŒŁ Æ ,

æ Ł Łı ƺ

æŁ æ Ł Ł ŒŁı æ Ł, æ æ Ł, -

º Ł

Æ º Ø ŒŁ º ŒŁı æ . ¨. . ´Ł ª ,

Łæ º ªº Æ ŒŁ Ł

Ł æŒŁ æ Øæ ææ Ł ßı æ , º Łº ŁæŒº -

Ł º æŁº ß ŒŁ

º łŁ Œ ª Œº ææ ŒŁı æ . ºŁº

´Ł ª º Ł

º ß , ƺŁ ŒŁ Œ º ß º -

ß º æ

ŁŁ Łæ º ŒŁı Œº ææŁ æŒŁı ı, Œ Œ ƺ

´ Ł ª , ƺ ˆŁº Æ

˚ Œ , ƺ Œ æ ´ غ . ˜ ªŁ æº æ Ł-

Œ Łª

Ł æŒŁı æ Æߺ ł Ł Ł Ł ßı ƺ

æ æ ß Ł Łæº Ł Ł,

æ æ Ł, ł Ł ƺ ß ˆ º Æ ı .

1.3 ˇ ƺ

Ł - ¸Ł º .

˙ ı Ł æŁ

Ł æŒ Ø ºß º Łæº Q(n) ł ŁØ Ł

p + x2 + y2 = n,

ª p - æ , x Ł - ºß , n - º Łæº . º ª Ø Ł º æ ƺ ı Ł æŁ ŁŒŁ º Łæº ł ŁØ Ł

p x2 y2 = l,

ª l - ŁŒæŁ

º

Łæº , p 6 n(n → ∞). X. -¸.

. Æߺ

æ º ˆ.

-

Ł (G. Hardy) Ł ˜

. ¸Ł º

(J. Littlewood) 1923 Ł

ææ

Ł Ł æ

Łæ Ł æŒŁı Ł ªŁ

Ł

æŒŁı æ Æ ŁØ.

˜Łæ æŁ ßØ

,

Æ ßØ . ´. ¸Ł ŁŒ ,

ºŁº

Ø Ł æŁ

-

ŁŒ º ª

Ł :

,

ª

¨

º ªŁ Ø ºß º ª Ł æº Æ æŒ

æ æ

æ ßı

Łæ º Ł = x2 + y2 + l. ø Łæ æŁ ª

Ø æŁ

-

ŁŒ

º Łæº ł ŁØ Æ Æø ª Ł Ł - ¸Ł º

p + ϕ(x,y) ª

p

- æ

.

, ϕ(x,y) - Ł Ł Ł º Ł º º

Œ Ł

— ææ

Ł º ªŁ ª Ł p ϕ(x,y) = l Ł Ł

Œ Œ º æ

Æ æŒ

æ Ł æ æ ßı Łæ º Ł p = ϕ(x,y) + l

´Ł ª - ` Æ Ł æ º ŁŁ æ ßı Łæ º Ł Ł æŒŁı

.

ª ææŁ ı æ Œ æ º ł Ł ƺ Ł - ¸Ł º , Œ Ł æŒŁ æłŁ ªŁ —Ł Ł Ł Æ º ł ª ł .

1.3.1 ´Ł ª - ` Æ Ł.

ˇ æ Ł Łæ º æ Œ Ł :

,

ª

ψ(y,k,l) = X = Xλ(n).

n6ynlmodk

, æ ø æ æ ß c1 > 0 Ł c2 > 0 ŒŁ ,

,

4 logx

ª k0 < e = z1− º , º Œ ª æ ø æ Ł æ ßØ Ł Ł Ł ßØ

Øæ Ł º ßØ Ł Ł Ł ßØ ı Œ χk0 Œ Ø, L(s,χk0) Ł º Ł s =

√ 11/18 −A

∆(Q,x) 6 c(A)( xQlogx + xlogx )

Ł º Æ A.

1.4 Ł Ł ƺ ºŁ º Ø.

Ł Ł ƺ ºŁ ª Ł æ Ł :

,

º Ø - ƺ , Œº ø æ

X

τk1τk2(m + a) m6n

X

τk1τk2(n m), m<n

ŁæŒ

æŁ Ł

æŒ -

ª τk(m)− Œ ºŁ æ

ºŁ ßı º ŁØ º ª Łæº

k

Ł

º Ø, æ Ł

Ł

Œ k1, Ł k2 > 2− -

º ß Łæº , a - ŁŒæŁ

º

Łæº ,

ºŁ -

º , n - æ

Æ º ł º Łæº . ´

æ

æ Ł, τ2(m) = τ(m) -

Łæº ºŁ º Ø º Łæº

ŁØ

m. ß ß , æ æ

x1x2...xk2 y1y2...yk1 = a, x1x2...xk1 y1y2...yk2 = n.

, Œ ºŁ æ

ł ŁØ

Ł Ł ƺ

ºŁ º Ø Ł k1 = 2 Ł º Æ

º

k2 Æߺ

ł æ

ø Łæ æŁ ª

. ´. ¸Ł ŁŒ .

Æ

ææ

º .

1.5 ˇ ƺ ºŁ

º Ø Ł ł .

ˇ ƺ ºŁ º Ø Ł

ł : ?= - æ , ? = xy, x, y

º ß ;

ˇ ƺ ßæŒ Ł æŁ Ł æŒ Ø ºß º Łæº ßı ŁØ Ł :

p xy = a,p < N, p + xy = N,p < N,x,y ∈ N

ª p− æ Łæº a− ŁŒæŁ º .

Æø - ŁæŒ æŁ ŁŒŁ º æ Ł :

ł ŁØ

º… -

. ˛ æ Ł Ł ß ˙Łª º ß Œ ,

X

τ(p − 1), p<N

ª τ(p)− Łæº ºŁ º Ø n.

ˇ ƺ ºŁ º Ø Ł ł Æߺ æ º . Ł ł (¯. Titchmarsh, 1930) Ł ł Ł æº º ŁŁ æ ºŁ æ Ł æłŁ Ø ªŁ ß —Ł ( … ææ Ł Ł ) . ˜Łæ æŁ ßØ , Æ ßØ . ´. ¸Ł ŁŒ , º Ø Ł æŁ ŁŒ Łæº ł ŁØ º º… ª Ł :