Всякому сферическому треугольнику АВС можно поставить в соответствие другой сферический треугольник А'В'С', вершины которого являются полюсами сторон ВС, СА, АВ сферического треугольника АВС, лежащими от этих сторон по ту же сторону, что и соответственно вершины А, В, С (рис. 19). Будем называть сферический треугольник А'В'С' полярным по отношению к сферическому треугольнику АВС.
Рис 19
Если сферический треугольник А'В'С' является полярным по отношению к сферическому треугольнику АВС, то и сферический треугольник АВС полярен по отношению к сферическому треугольнику А'В'С'. В самом деле, так как точка В' является полюсом стороны АС, то точка В' полярно сопряжена с точками А и С (рис. 19). Так как точка С' является полюсом стороны АВ, то точка С' полярно сопряжена с точками А и В. Но так как точка А полярно сопряжена с точками В' и С' стороны В'С', то она является полюсом стороны В'С'. При этом, так как точки А и А' лежат по одну сторону от стороны ВС, то они лежат и по одну сторону и от стороны В'С'. Также доказывается, что точки В и С тоже являются полюсами сторон С'А' и А'В' и лежат по ту же сторону от этих сторон, что и точки В'С', т.е. сферический треугольник АВС полярен по отношению к сферическому треугольнику А'В'С'.
Обозначим точки пересечения больших окружностей АВ и АС со стороной В'С' через L и М, точки пересечения больших окружностей ВС и ВА со стороной А'С' через N и Р и точки пересечения больших окружностей СА и СВ со стороной А'В' через Q и R (рис. 19). Тогда если величины углов САВ, АВС и ВСА обозначить через А, В и С, а радиус сферы – через r, то дуги больших окружностей LM, NP и QR соответственно равны Аr, Br, Cr. Далее, так как дуги В'М, LC', C'P, NA', A'R, QB' соединяют полярно сопряжённые точки, то они равны
. Поэтому, если все три угла А, В, С , то дуги B'L и MC', C'N и PA', A'Q и RB', дополняющие дуги Аr, Br, Cr до , соответственно равны , , . Таким образом, стороны В'С', С'А' и А'В' полярного треугольника в этом случае равны , , . Тот же результат совершенно аналогично доказывается и для случаев, когда углы А, В или С больше . Поэтому стороны треугольника, полярного по отношению к сферическому треугольнику АВС, соответственно равны , , . Отсюда, если мы обозначим эти стороны через а', b', с', мы получим, что т.е. углы треугольника, полярного по отношению к сферическому треугольнику со сторонами а', b', с', соответственно равны .Переход от данного сферического треугольника к треугольнику полярному относительно данного позволяет, зная свойства сторон первого треугольника, выводить из них свойства углов второго. Таким путём получается следующая теорема:
Теорема 1. Во всяком сферическом треугольнике:
1) каждый угол, увеличенный на два прямых, больше суммы двух других углов;
2) сумма трёх углов больше двух прямых и меньше шести прямых.
Сферический треугольник, совпадающий со своим полярным треугольником, называется автополярным треугольником. Так как все вершины автополярного треугольника полярно сопряжены, все стороны этого сферического треугольника равны четверти большой окружности, откуда вытекает, что все три угла этого сферического треугольника прямые. На рис. 20 изображён автополярный треугольник АВС.
Рис 20
Два сферических треугольника называются равными, если их можно совместить друг с другом движением сферы. Очевидно, что между вершинами двух равных сферических треугольников можно установить такое соответствие, при котором и соответственные стороны, и соответственные углы этих сферических треугольников равны: для этого надо поставить в соответствие каждой вершине первого сферического треугольника ту вершину второго сферического треугольника, в которую он переходит при совмещении этих сферических треугольников.
Равенство сферических треугольников, так же как равенство плоских треугольников, определяется равенством трёх элементов этих треугольников.
Первый признак равенства треугольников.
Два сферических треугольника равны, если две стороны одного сферического треугольника равны двум соответственным сторонам другого сферического треугольника и равны углы между этими сторонами.
Второй признак равенства.
Два сферических треугольника равны, если два угла одного сферического треугольника равны двум соответственным углам другого сферического треугольника и равны стороны между этими углами.
Третий признак равенства.
Два сферических треугольника равны, если все три стороны одного сферического треугольника равны соответственным сторонам другого сферического треугольника.
Четвёртый признак равенства.
Два сферических треугольника равны, если две стороны одного сферического треугольника равны двум соответственным сторонам другого сферического треугольника, углы, лежащие против двух равных сторон, равны, а углы, лежащие против двух других равных сторон, одновременно острые или тупые.
Пятый признак равенства.
Два сферических треугольника равны, если два угла одного сферического треугольника равны двум соответственным углам другого сферического треугольника, стороны, лежащие против двух равных углов, равны, а стороны, лежащие против двух других равных углов, одновременно меньше или больше
.Шестой признак равенства.
Два сферических треугольника равны, если все три угла одного сферического треугольника равны соответственным углам другого сферического треугольника.
Сравнивая первый признак равенства со вторым, третий с шестым, а четвёртый с пятым, можно заметить, что если для двух сферических треугольников выполнен признак каждой пары, для полярных по отношению к ним треугольников выполнен второй признак той же пары. Поэтому, так как из равенства двух сферических треугольников, очевидно, вытекает равенство полярных по отношению к ним треугольников, то из справедливости одного из признаков каждой пары вытекает справедливость второго из признаков той же пары.
Сферический треугольник называется равнобедренным, если две его стороны равны.
Всякий сферический треугольник, наложимый на треугольник, ему симметричный, - равнобедренный.
Действительно, мы знаем, что в силу того, что оба треугольника имеют противоположное расположение, невозможно наложить один треугольник на другой так, чтобы совпадали соответственные вершины, т.е. вершины, находящиеся первоначально на концах одного диаметра; если бы среди сторон треугольника не было равных между собой, то такое наложение было бы невозможно и ни каким другим образом.
Обратно, всякий равнобедренный сферический треугольник наложим на треугольник, ему симметричный.
Если треугольник А'В'С' симметричен треугольнику АВС и если АВ равно АС, то два треугольника АВС и А'С'В', имеющие (при выбранном порядке вершин каждого из них) одно и тоже расположение, равны по второму признаку равенства.
Теорема 2.В равнобедренном сферическом треугольнике углы, противолежащие равным сторонам, равны.
Действительно, при совмещении треугольника АВС (АВ=АС) с симметричным ему треугольником А'С'В' угол, совпадающий с углом В', есть угол С'; таким образом, оба эти угла равны, и тоже самое имеет место и для углов С и В'.