Смекни!
smekni.com

История возникновения и развития методов реконструкции математических моделей динамических систем (стр. 4 из 4)

Основатель нобелевских премий Альфред Нобель, как известно, исключил математику из числа наук, за достижения в которых присуждается эта высшая научная награда. Вместе с тем, современное математическое моделирование охватывает области исследований, до недавнего времени недоступные математике. В последние годы ряд Нобелевских премий по химии, медицине, экономике, физике элементарных частиц были присуждены работам, методологическую основу которых составляло математическое моделирование. Например, для дальнейшего исследования нелинейных процессов в микромире были разработаны соответствующие численные методы с применением компьютеров и компьютерных сетей (сетевых grid-технологий), ориентированные на решение задач физики элементарных частиц. Алгоритмы квантово-механических расчетов прогрессируют не менее быстрыми темпами, чем в других областях вычислительной математики.

Биология во многом остается экспериментальной и описательной дисциплиной, а история математического моделирования биологических процессов вряд ли насчитывает более 20 лет. И все-таки уже можно назвать биологические задачи, для которых вычислительный эксперимент становится определяющей методологией. Математическое моделирование и вычислительный эксперимент – ведущие методологии изучения глобальных моделей процессов и явлений на Земле, например климата Земли. Проведение работ по глобальному моделированию стимулировалось деятельностью Римского клуба, неправительственной организации. Первую из таких моделей опубликовал в 1971 г. американский специалист по теории управления Д. Форрестер. Компьютерные игры, проведенные Д. Форрестером с глобальной моделью, показали, что в середине ХХI века человечество ждет кризис, связанный прежде всего с истощением природных ресурсов, падением численности населения и производства продуктов, ростом загрязнения окружающей среды. Известны результаты глобального моделирования явления "ядерной зимы", выполненные в ВЦ АН СССР В. В. Александровым и Г. Л. Стенчиковым под руководством академика Н. Н. Моисеева. Эти результаты дали человечеству, в том числе политикам, неопровержимые аргументы против ядерной войны, даже так называемой "ограниченной ядерной войны".

Для математического моделирования и вычислительного эксперимента использовались, главным образом, универсальные цифровые вычислительные машины, доступные коллективам исследователей. В СССР в 70-80-х годах прошлого века это были БЭСМ-6 и модели ЕС ЭВМ, для которых разрабатывались библиотеки и пакеты прикладных программ вычислительной математики. С появлением персональных компьютеров стало возможно развитие информационной технологии вычислительного эксперимента, которая предусматривает поддержку пользовательского интерфейса и поиска нужных алгоритмов и программ с помощью персональных компьютеров (отечественного производства или импортных), а проведение расчетов на математических моделях - с помощью высокопроизводительных компьютеров БЭСМ-6, ЕС ЭВМ или суперкомпьютеров "Эльбрус".
Потребности вычислительного эксперимента при изучении явлений в наиболее сложных областях науки, таких, как проблемы физики элементарных частиц, молекулярной биологии (например, геном человека), геофизики (в частности, физики атмосферы) и др., оказались связанными с необходимостью обеспечить предельно возможные вычислительные мощности. Выход был найден в коллективном использовании вычислительных мощностей, доступных исследователям через компьютерные сети. В развитии так называемых grid-технологий, разрабатываемых мировым сообществом в настоящее время, участвуют и ведущие научные институты России: Объединенный институт ядерных исследований (г. Дубна), Научно-исследовательский институт ядерной физики МГУ, Институт физики высоких энергий РАН (г. Протвино), Институт биофизики РАН (г. Пущино), Институт прикладной математики им. М. В. Келдыша РАН и др. Идея организации распределенных вычислений в гетерогенной сетевой среде, называемая метакомпьютингом, образно выражается метафорой "grid (сеть)". Подобно тому, как мы подключаем к электросети бытовые приборы, не задумываясь об устройстве этой электросети, сетевые grid-технологии призваны предоставить исследователям требуемые вычислительные мощности как разделяемые ресурсы. В Европе такой сетью должна стать Data Grid, к которой будет подключен и российский сегмент.


Заключение

Математическое моделирование – один из основных методов научного исследования. Это направление исследований, начавшись с задач аппроксимации экспериментальных зависимостей гладкими функциями, переживало взлеты и падения интереса со стороны научной общественности. Так, взлет 1980-х – начала 1990-х был связан с надеждами на концепцию динамического хаоса, с доказательством известных теорем Такенса, с появлением мощной вычислительной техники. Казалось, что вот-вот – и конструирование моделей по рядам данных будет поставлено «на поток».

Но затем последовало разочарование, вызванное частыми практическими неудачами разрабатывавшихся универсальных подходов. Задачи математического моделирования сложных процессов в общем случае не могут быть решены с помощью готовой технической процедуры.

Они остаются, и, по всей видимости, всегда останутся в значительной степени искусством. Здесь вряд ли возможны универсальные методики, пригодные на все случаи жизни. Но для определенных классов объектов удается разработать рецепты решения таких задач, и это представляется перспективным направлением исследований.

Не все специалисты разделяют такое оптимистическое отношение к проблеме. Но, какие бы ни были перспективы, уже то, что достигнуто в этой области, достойно изучения и применения в практике.


Список литературы

1. Анищенко В.С. Динамические системы // Соросовский образовательный журнал. 1997. № 11. С. 77-84.

2. Анищенко В.С. Знакомство с нелинейной динамикой: Лекции соросовского профессора: Учеб. пособие. – Москва-Ижевск: Институт компьютерных исследований, 2002.

3. Афанасьева В.В. К философскому обоснованию феномена детерминированного хаоса. – М.: Наука, 2001.

4. Безручко Б.П., Смирнов Д.А. Математическое моделирование и хаотические временные ряды. Саратов: ГосУНЦ «Колледж», 2005.

5. Вячеслав С.С., Горохов В.Г., Розов М.А. Философия науки и техники. Электронный учебник.

6. Динамические системы (Современные проблемы математики, фундаментальные направления). – Т. 1, 2. – М.: ВИНИТИ, 1985.

7. Заславский А. Собственные миры динамических систем. – М.: Наука, 1986.

8. Кириленко Г.Г., Шевцов Е.В. Философия. Высшее образование / Кириленко Г.Г., Шевцов Е.В. - М.: Филол. о-во СЛОВО: ООО Изд-во ЭКСМО, 2003.

9. Кохановский В.П., Золотухина Е.В., Лешкевич Т.Г., Фатхи Т.Б. Философия для аспирантов: Учебное пособие. Изд. 2-е - Ростов н/Д: "Феникс", 2003.

10. Кузнецов С.П. Динамический хаос (курс лекций). М.: Издательство Физико-математической литературы, 2001.

11. Малинецкий Г.Г. Хаос. Структуры. Вычислительный эксперимент (введение в нелинейную динамику). – М.: Эдиторил УРСС, 2000.

12. Месарович М., Такахара Я.. Общая теория систем. Математические основы. – М.: Мир, 1978.

13. Павлов А.Н., Янсон Н.Б. Анищенко В.С. Реконструкция динамических систем // Радиотехника и электроника. 1999. Т. 44, № 9. С. 1075-1092.

14. Самарский А. А., Михайлов А. П. Компьютеры и жизнь. – М.: Педагогика, 1987.

15. Трубецков Д. И. и др. Введение в теорию самоорганизации открытых систем М.: Физматлит, 2000.