Одним из важных достижений развивающейся теории нелинейных колебаний стало формирование Андроновым и Понтрягиным представления о грубых или структурно-устойчивых системах. Представим себе пространство, точки которого изображают динамические системы. Система грубая, если около соответствующей ей точки пространства систем можно указать такую окрестность, что в ней будут располагаться только системы с топологически эквивалентным устройством фазового пространства. В пространстве параметров грубые системы занимают целые области. Эти области разграничены поверхностями, где располагаются негрубые системы коразмерности один. На этих поверхностях могут располагаться линии коразмерности два и т. д.
Исследовательская программа нелинейной теории колебаний по Андронову и Понтрягину и состоит в выделении и изучении грубых ситуаций, а затем негрубых в порядке возрастающей коразмерности. Что касается негрубых ситуаций, то они составляют предмет теории бифуркаций — глубокой и хорошо развитой математической дисциплины, одного из краеугольных камней нелинейной динамики.
С 1970 г. с интервалом в 2 года в Горьком организуются школы-семинары по нелинейным колебаниям и волнам, в которых участвуют ведущие советские ученые. Этих школ состоялось 9, и они во многом определили распространение в нашей стране идей нелинейной динамики и динамического хаоса. Еще одна школа, восстанавливающая прерванную традицию, уже международная, состоялась в 1995 г. В формировании, распространении и популяризации в России представлений о хаотической динамике большую роль сыграли А. В. Гапонов-Грехов, Ю.И.Неймарк, М.И.Рабинович, Л. П. Шильников. В 1979 г. Кияшко, Пиковский и Рабинович предложили, по-видимому, первый простой радиотехнический автогенератор, в котором целенаправленно был реализован режим хаотических автоколебаний.
Четвертая линия развития связана с гидродинамикой и проблемой турбулентности. В 1883 г. была опубликована работа английского физика Осборна Рейнольдса (1842-1912) «Экспериментальное исследование обстоятельств, которые определяют, будет ли движение воды прямолинейным или волнистым, и о законе сопротивления в параллельных каналах». В зависимости от безразмерного параметра, известного теперь как число Рейнольдса), движение воды в трубке было ламинарным или турбулентным. Хотя основные уравнения, описывающие динамику вязкой жидкости — уравнения Навье-Стокса, уже были известны, причины возникновения турбулентности оставались загадкой. С тех пор вопрос о природе турбулентности стоял перед наукой, приобретая со временем все большую остроту. Около 1920 г. английский физик Л.Ричардсон развил качественные представления о том, что в турбулентном течении имеется перенос энергии от крупных ко все более и более мелким завихрениям, пока энергия не диссипирует из-за вязкости в малых масштабах. В 1941 г. была предложена теория турбулентности Колмогорова-Обухова. Анализ основывался на предположении, что при больших числах Рейнольдса турбулентное состояние можно считать локально однородным и изотропным в статистическом смысле, и о том, что имеет место каскадная передача энергии от крупных пространственных масштабов к мелким в так называемом «инерционном интервале» — области масштабов, где вязкость несущественна. Замечательно простая и глубокая теория приводила ко вполне определенному теоретическому предсказанию — распределение энергии по спектру должно быть пропорционально /г~5'3, где к – волновое число («закон пяти третей»). К настоящему времени получены экспериментальные данные, хорошо согласующиеся с этим законом, но осознана также необходимость внесения уточнений в теорию.
Другое направление в попытках понять природу турбулентности состояло в поисках ответа на вопрос — как возникает турбулентность, если постепенно увеличивать число Рейнольдса, начав от малых значений, когда течение заведомо ламинарное. В 1944 г. была опубликована статья советского физика Л.Д.Ландау (1908— 1968) «К проблеме турбулентности». В этой замечательной для своего времени статье Ландау предположил, что турбулентность возникает в результате большого числа (каскада) последовательных бифуркаций, каждая из которых состоит в появлении колебаний с новой частотой. Вновь возникающие частоты в типичном случае находятся в иррациональном соотношении с ранее возникшими частотами. Аналогичные представления развивал несколько позже немецкий математик Э.Хопф (1902-1983; работа «Математический пример, демонстрирующий особенности турбулентности» опубликована в 1948). Поэтому данную картину возникновения турбулентности называют сценарием Ландау-Хопфа. Подчеркнем, что этим работам предшествовало формирование представлений об автоколебаниях, предельных циклах и бифуркациях в радиофизике и теории колебаний.
В 1963 г. американский метеоролог Э.Лоренц опубликовал статью «Детерминированное непериодическое течение», в которой обсуждались результаты численного интегрирования с помощью компьютера системы трех обыкновенных дифференциальных уравнений, моделирующей динамику жидкости при конвекции в подогреваемом снизу слое. Будучи хорошо образованным математически, Лоренц подверг полученные результаты тщательному и глубокому обсуждению, акцентировав внимание на взаимосвязи между наблюдаемой сложной динамикой и присущей системе неустойчивостью фазовых траекторий. Позднее это свойство хаотической динамики пропагандировалось им под названием «эффект бабочки»: в приложении к метеорологии взмах крыльев бабочки может через достаточное время повлечь существенное изменение погоды где-то совсем в другом месте. Примерно в то же самое время А. Н. Ораевский с соавторами также получили непериодические решения для аналогичных уравнений в теории одномодового лазера. Как работа Лоренца, опубликованная в метеорологическом журнале, так и работа Ораевского не были своевременно замечены и оценены.
В 1971 г., основываясь на достигнутом к этому времени продвижении в математических исследованиях, Д.Рюэль и Ф. Такенсвыступили с работой «О природе турбулентности». Подвергнув критике теорию Ландау, они аргументировали, что уже после включения в игру относительно небольшого числа частот (трех или четырех в зависимости от некоторых математических деталей) динамика может стать турбулентной и, в частности, демонстрировать характерный для случайного процесса сплошной спектр. Это связывалось с появлением в фазовом пространстве «странного аттрактора» — ключевой термин, введение которого определило историческое значение работы Рюэля и Такенса. Подчеркивалось наличие неустойчивости фазовых траекторий на странном аттракторе и его нетривиальная геометрическая структура — он представлял собой то, что стали называть фрактальным множеством или просто фракталом.
С точки зрения интерпретации результатов, работа Рюэля и Такенса также оказалась уязвимой для критики. Многие вопросы, которые возникают в связи с предложенной ими картиной перехода к турбулентности, до сих пор остаются открытыми. Надо сказать, что аргументация и в работе Ландау, и в работе Рюэля и Такенса носила столь общий характер, что имела равное отношение как к возникновению турбулентности, так и к возникновению сложной динамики в диссипативных системах другой физической природы. Дальнейшее понимание возможных типов перехода произошло благодаря еще одной линии развития.
Попытки математического описания биологических проблем динамики популяций восходят к Томасу Мальтусу (1766-1834), автору нашумевшей концепции о том, что численность людей возрастает в геометрической прогрессии, а средства поддержания жизни лишь в арифметической. Поэтому численность населения должна регулироваться войнами, эпидемиями и пр. Марксисты, как известно, заклеймили эту теорию как человеконенавистническую. Не входя в полемику, заметим, что в отсутствие факторов, сдерживающих рост населения, изменение численности популяции из года в год «по Мальтусу» можно описать как хп+\ = Rxn, где R— параметр, определяющий условия жизни популяции. Ввести сдерживающий фактор можно, если добавить в уравнение нелинейный, например, квадратичный член: жп+1 = R(xn — x2n). Полученное соотношение называют логистическим отображением и оно действительно неплохо описывает, по крайней мере, с качественной стороны, динамику некоторых биологических популяций.
Интересный результат, проливающий свет на возможность сложной динамики в логистическом отображении, был получен в конце 40-х годов в работе американских математиков Станислава Улама (1909-1984) и Джона фон Неймана. Они показали, что для случая R= 4 это отображение путем замены переменных сводится к форме, допускающей тривиальный анализ, причем оказывается, что выбором начальной точки х можно реализовать любую наперед заданную последовательность знаков величины х — хтах.
В 1975 г. американские математики Ли и Йорке опубликовали работу «Период три означает хаос». Речь шла о том, что если при частном значении параметра логистическое или другое одномерное отображение вида хп+\ = f(xn) имеет цикл периода три, то оно имеет бесконечное множество циклов всех прочих периодов. Эта работа привлекла большое внимание, и стоит отметить, что именно в ней в контексте нелинейной динамики впервые появился термин «хаос», ставший впоследствии общепринятым обозначением всей области деятельности, о которой мы ведем речь. Только через несколько лет на Западе стало широко известно, что еще в 1964 г. советский математик А. Н. Шарковский опубликовал гораздо более содержательную теорему, устанавливающую самые общие закономерности сосуществования циклов различного периода в одномерных непрерывных отображениях.