Смекни!
smekni.com

Алгебра 10 класс Мерзляк профиль (стр. 5 из 7)

У прикладі 3 кожному двоцифровому числу було поставлено у відповідність єдине трицифрове число зазначеного вигляду і, навпаки, кожне таке трицифрове число є відповідним єдиному двоцифровому числу. Отже, між множинами, що розглядаються, було встановлено взаємно однозначну відповідність.

Зазначимо, що коли в класі всі учні сидять і при цьому є вільні стільці, то між множиною учнів і множиною стільців взаємно однозначної відповідності не встановлено.

Цікаво, що з дитинства кожному з нас неодноразово доводилося встановлювати взаємно однозначні відповідності. Дитина, промовляючи «один», «два», «три» і при цьому послідовно показуючи на машинку, м’ячик і коника, тим самим встановлює взаємно однозначну відповідність між множиною своїх іграшок і множиною {1, 2, 3}. Рахуючи іграшки, дитина ніби прив’язує до кожного з предметів ярлики з написами «1», «2», «3». Зауважимо, що, показуючи іграшки в іншому порядку, наприклад, «м’ячик», «коник», «машинка», одержуємо іншу взаємно однозначну відповідність між цими множинами.

Якщо між скінченними множинами A і B встановлено взаємно однозначну відповідність, то n (A) = n (B). І навпаки, якщо n (A) = n (B), то між скінченними множинами A і B можна встановити взаємно однозначну відповідність.

Отже, між скінченними множинами з різною кількістю елементів неможливо встановити взаємно однозначну відповідність.

Це дозволяє сформулювати таке правило.

Якщо між скінченними множинами A і C встановлено взаємно однозначну відповідність і СB, CB, то n (A) < n (B).

51.° Кожний з 32 учнів класу вивчає щонайменше одну іноземну мову. З них 20 вивчають англійську мову і 18 — французьку. Скільки учнів вивчають і англійську, і французьку мови?

52.° Відомо, що 26 мешканців будинку тримають котів і собак, 16 з них мають котів, а 15 — собак. Скільки мешканців мають і собаку, і кота?

53.° З анкети, проведеної в класі, з’ясувалося, що з 30 учнів класу 18 мають брата, 14 — сестру, а у 10 учнів є сестра і брат. Чи є в цьому класі учні, у яких немає ні сестри, ні брата?

54.° У грудні було 10 ясних і затишних днів, 15 днів був вітер і 12 днів ішов сніг. Скільки днів у грудні була хуртовина (сніг і вітер)?

55.° Чи встановлено взаємно однозначну відповідність між множинами А і В (рис. 12)? Точками на рисунку зображено елементи множин.

а) б) в) г)

Рис. 12

56.° Одинадцять гравців футбольної команди отримали футболки з номерами від 1 до 11. Між якими множинами встановлено взаємно однозначну відповідність?

57.° У результаті жеребкування кожна з 20 пар фігуристів отримала порядковий номер її виступу. Між якими множинами встановлено взаємно однозначну відповідність?

58.° Кожний глядач, який прийшов до кінотеатру, купив квиток із зазначеними рядом і місцем. Між якими множинами встановлено взаємно однозначну відповідність?

59. Між першими n натуральними числами і правильними дробами зі знаменником 7 установлено взаємно однозначну відповідність. Знайдіть n.

60. Кожному елементу множини {n, n + 1, n + 2}, де n ∈ , поставили у відповідність остачу від ділення цього елемента на 3. Чи встановлено таким чином взаємно однозначну відповідність між множинами {n, n + 1, n + 2} і {0, 1, 2}?

61.* В олімпіаді взяли участь 46 учнів. Їм було запропоновано розв’язати 3 задачі. Після підведення підсумків з’ясувалося, що кожен з учасників розв’язав хоча б одну задачу. Першу і другу задачі розв’язали 11 учасників, другу і третю — 8 учасників, першу і третю — 5 учасників, а всі три задачі розв’язали тільки 2 учасники. Доведіть, що одну із задач розв’язали не менше ніж половина учасників.


22 23


4.
нескінченні множини. Зліченні множини

У попередньому пункті ми розглядали скінченні множини, між якими встановлено взаємно однозначну відповідність, і з’ясували, що такі множини мають однакову кількість елементів.

Керуючись принципом «частина менша від цілого», доходимо висновку, що коли B — власна підмножина скінченної множини A, то n (B) < n (A). Отже, між скінченною множиною та її власною підмножиною неможливо встановити взаємно однозначну відповідність.

Оскільки  ⊂ , то, здавалося б, природно вважати, що цілих чисел більше, ніж натуральних. Проте це не так.

Нескінченні множини в цьому сенсі поводяться незвично.

Розглянемо множину  і підмножину M парних чисел. Множина M є власною підмножиною множини . Кожному елементу n ∈  поставимо у відповідність єдиний елемент 2nM:

1,

2,

3,

4,

...,

n,

...

-

-

-

-

-

2,

4,

6,

8,

...,

2n,

...

При цьому кожне парне число відповідатиме єдиному натуральному числу. Тим самим між множинами  і M встановлено взаємно однозначну відповідність, а тому не можна вважати, що в множині  міститься більше елементів, ніж в її власній підмножині — множині парних чисел.

Цей приклад показує, що звичні для нас уявлення про скінченні множини не можна переносити на нескінченні мно­ жини.

Узагалі, математиками було доведено, що в будь­якій нескінченній множині A можна виокремити власну підмножину A1 таким чином, що між множинами A і A1 можна встановити взаємно однозначну відповідність. Це принципова відмінність нескінченних множин від скінченних.

Якщо множини A і B є скінченними і між ними встановлено взаємно однозначну відповідність, то n (A) = n (B). Якщо ж взаємно однозначну відповідність установлено між нескінченними множинами A і B, то в математиці не прийнято говорити, що ці множини мають однакову кількість елементів, а кажуть, що множини A і B мають однакову потужність.

4. Нескінченні множини. Зліченні множини

Означення. Дві множини називають рівнопотужними, якщо між ними можна встановити взаємно однозначну відповідність.

Для нескінченних множин слово «потужність» означає те саме, що для скінченних множин «кількість елементів».

Доведемо ще один дивовижний факт: множина точок прямої рівнопотужна множині точок відкритого відрізка (відрізка, у якого «виколото» кінці), тобто пряма містить стільки ж точок, скільки містить їх відкритий відрізок.

На рисунку 13 зображено пряму MN, яка дотикається до півкола з центром у точці O і діаметром AB, паралельним прямій MN. Вилучимо з півкола точки A і B. Таке півколо називають відкритим.

Кожній точці X відкритого півкола поставимо у відповідність точку X1 прямої MN, яка лежить на промені OX. Зрозуміло, що точці X відповідає єдина точка прямої MN і, навпаки, кожна точка прямої MN є відповідною єдиній точці відкритого півкола. Отже, установлено взаємно однозначну відповідність між множиною точок прямої і множиною точок відкритого півкола.

A O A X B

M X 1 N

1

Рис. 13 Рис. 14

На рисунку 14 показано, як встановити взаємно однозначну відповідність між множиною точок відкритого відрізка і множиною точок відкритого півкола. Отже, множина точок відкритого відрізка AB рівнопотужна множині точок прямої MN.

У розповіді на с. 27 ви дізнаєтесь ще про один несподіваний факт, у який важко повірити, керуючись лише інтуїцією: множина точок сторони квадрата рівнопотужна множині точок квадрата.

Означення. Множину, рівнопотужну множині натуральних чисел, називають зліченною множиною.

Вище ми показали, що множина парних чисел є зліченною.

Зрозуміло, що жодна скінченна множина не є зліченною.

24 25

Натуральне число n, яке відповідає елементу a зліченної множини A, називають номером цього елемента. Якщо елемент a має номер n, то пишуть: an. Коли встановлюють взаємно однозначну відповідність між множинами A і , кожний елемент множини A отримує свій номер, і ці елементи можна розмістити послідовно:

a1, a2, a3, ..., an, ... .

Так, якщо елементи множини P простих чисел розмістити у порядку зростання 2, 3, 5, 7, 11, ..., то всі елементи цієї множини можна пронумерувати:

2, 3, 5, 7, 11, ...

- - - - -

1, 2, 3, 4, 5, ...

Тим самим установлено взаємно однозначну відповідність між множинами P і .

У такий спосіб можна показати, що будь­яка нескінченна підмножина множини  є зліченною (зробіть це самостійно).

На перший погляд здається, що елементи множини  пронумерувати неможливо: адже множина  є власною підмножиною множини . Отже, чисел для нумерації не вистачить: усі вони будуть «витрачені» на множину .