26. Äіàãîíàëі ðîìáà äîðіâíþþòü 16 ñì і 12 ñì. Çíàéäіòü ïåðèìåòð і ïëîùó ðîìáà.
27. Ïåðèìåòð ðîìáà äîðіâíþє 6,8 ñì, à îäíà ç äіàãîíàëåé 1,6 ñì. Çíàéäіòü ïëîùó ðîìáà.
28. Ïåðèìåòð ïàðàëåëîãðàìà äîðіâíþє 52 ñì, à éîãî ïëîùà 60 ñì2. Çíàéäіòü ñòîðîíè і âèñîòè ïàðàëåëîãðàìà, ÿêùî éîãî ãîñòðèé êóò 30.
29.
Ó ðіâíîáі÷íіé òðàïåöії îñíîâè äîðіâíþþòü 8 ñì і 18 ñì. Çíàéäіòü ðàäіóñ âïèñàíîãî êîëà.30. Áіñåêòðèñà ïðÿìîãî êóòà òðèêóòíèêà äіëèòü ãіïîòåíóçó íà âіäðіçêè 20 äì і 15 äì. Çíàéäіòü ïëîùó òðèêóòíèêà.
31. Çíàéäіòü äіàãîíàëі ðіâíîáі÷íîї òðàïåöії, îñíîâè ÿêîї äîðіâíþþòü 11 ñì і 21 ñì, à áі÷íà ñòîðîíà 13 ñì.
32. Çíàéäіòü êóòè îïóêëîãî ï’ÿòèêóòíèêà, ÿêùî âîíè ïðîïîðöіéíі ÷èñëàì 3, 4, 5, 7, 8.
33. Öåíòðàëüíèé êóò ïðàâèëüíîãî ï-êóòíèêà ó 4 ðàçè ìåíøèé çà éîãî âíóòðіøíіé êóò. Çíàéäіòü ï.
34. Íàêðåñëіòü êîëî äіàìåòðà 6 ñì. Âïèøіòü ó êîëî é îïèøіòü íàâêîëî íüîãî ïðà âèëüíі ï-êóòíèêè òà îá÷èñëіòü їõ ïåðèìåòðè, ÿêùî: à) ï 3; á) ï 4; â) ï 6; ã) ï 12.
35. Ó êîëî âïèñàíî êâàäðàò і ïðàâèëüíèé øåñòèêóòíèê. Ïåðèìåòð êâàäðàòà 24 ñì. Çíàéäіòü ïåðèìåòð і ïëîùó øåñ òèêóòíèêà.
36. Íàâêîëî êîëà îïèñàíî ïðàâèëüíèé òðèêóòíèê, à â êîëî âïèñàíî ïðàâèëüíèé øåñòèêóòíèê, ïåðèìåòð ÿêîãî 18 ñì. Çíàéäіòü ïåðèìåòð і ïëîùó òðèêóòíèêà.
37. Äàíî ïðàâèëüíèé øåñòèêóòíèê çі ñòîðîíîþ 4 ñì. Çíàéäіòü øèðèíó і ïëîùó êіëüöÿ, óòâîðåíîãî êîëàìè, âïèñàíèì і îïèñàíèì íàâêîëî øåñòèêóòíèêà.
38. Çíàéäіòü ñòîðîíè òà ïëîùó ÀÂÑ, ÿêùî A(3; 4), B(–3; 4), C(–3; –4).
39. Äàíî ÀÂÑ, ó ÿêîãî À(7; 5), Â(4; 1), Ñ(–4; 7). Çíàéäіòü äîâæèíè éîãî ìåäіàí.
40.
Âіäðіçîê MN òî÷êàìè K і Ð ïîäіëåíî íà òðè ðіâíі ÷àñòèíè (ÌK KÐ PN). Çíàéäіòü êîîðäèíàòè òî÷êè N, ÿêùî Ì(2; –4), Ð(–6; 2).41. Íà îñі àáñöèñ çíàéäіòü òî÷êó Ì, ÿêà ðіâíîâіääàëåíà âіä ïî÷àòêó êîîðäèíàò і âіä òî÷êè Ð(2; 3).
42. Íàïèøіòü ðіâíÿííÿ ïðÿìîї, ÿêà ïðîõîäèòü ÷åðåç òî÷êè À(1; 4) і Â(–2; 1). Çíàéäіòü ïëîùó òðèêóòíèêà, ÿêèé âіä òèíàє öÿ ïðÿìà âіä îñåé êîîðäèíàò.
43. Äîâåäіòü, ùî òðèêóòíèê ç âåðøèíàìè À(3; 4), Â(6; –2), Ñ(–3; 1) – ðіâíîáåäðåíèé. Çíàéäіòü éîãî ïëîùó.
44. Óñòàíîâіòü âèä ÷îòèðèêóòíèêà ABCD, ÿêùî A(3; 1), B(4; 6), Ñ(9; 7), D(8; 2). Çíàéäіòü éîãî ïåðèìåòð і ïëîùó.
45. Çíàéäіòü êîîðäèíàòè òî÷êè, ÿêà ñèìåòðè÷íà òî÷öі À(3; –5) âіäíîñíî: à) òî÷êè (0; 0); á) îñі àáñöèñ; â) îñі îðäèíàò.
46. Ïîáóäóéòå äâà äîâіëüíі âåêòîðè a і b. Ïîáóäóéòå âåêòîð d òàêèé, ùî:
à) d a + b; á) d a – b;â) d a – 3b; ã) d 2a + 0,5b.
47.
48.
Çíàéäіòü ìîäóëü âåêòîðà p 2a – 3b, ÿêùî a (1; 3), b (–2; 0).49. Ïðè ÿêèõ çíà÷åííÿõ õ âåêòîðè a (õ; 2) і b (4; 2x) êîëіíåàðíі?
50. Ïðè ÿêèõ çíà÷åííÿõ õ âåêòîðè p (2; õ) і s (õ; õ + 3) ïåðïåíäèêóëÿðíі?
Б
51. Ïî ðіçíі ñòîðîíè âіä ïðÿìîї MN ïîçíà÷åíî òî÷êè À і  òàê, ùî ÌÀ Ì і NA NB. Äîâåäіòü, ùî À MN.
52. Ó ðіâíîáåäðåíîìó òðèêóòíèêó îñíîâà äîðіâíþє 30 ñì. Âè ñîòà, ïðîâåäåíà äî áі÷íîї ñòîðîíè, ïîäіëÿє її íà âіäðіçêè ó âіäíîøåííі 7 : 18, ïî÷èíàþ÷è âіä âåðøèíè. Çíàéäіòü ïëîùі
÷àñòèí òðèêóòíèêà, íà ÿêі éîãî ïîäіëÿє öÿ âèñîòà.
53. Ñòîðîíà òðèêóòíèêà, ìåäіàíà і âèñîòà, ïðîâåäåíі äî íåї, äîðіâíþþòü âіäïîâіäíî 34, 25 і 24 ñì. Çíàéäіòü ïåðèìåòð òðèêóòíèêà.