Смекни!
smekni.com

Вычислительные методы линейной алгебры (стр. 4 из 5)

kr(n)k → 0 n → ∞

S S

n → ∞ |µk| < 1
,

.

kr(n)k = kG−1JnG r(0)k 6 kG−1k kJnk kGk kr(0)k → 0 n → ∞.

S

ε

n → ∞

B = E

S = E τA

S max|µk| τ max|µk| k k

τ A = A> 0 A 0 < γ1 6 λk 6 γ2 k =

λk S

µk = 1 − τλk

0 < τ < 22 |µk| = |1−τλk| < 1

0 < τ < 22 τ = τ

|µ∗| = 0<τ<min22 1max6k6m |1 − τλk|

τ

γ1 < λ < γ2 gλ(τ) = 1−τλ

τ = τ∗ |gλ(τ∗)| 6 |gλ(τ)| γ1 < λ < γ2 0 < τ <

22 0 < τ < 12

|gγ2(τ)| 6 |gγ1(τ)| τ > 11 |gγ1(τ)| 6 |gγ2(τ)|

12 6 τ 6 11 τ0

|gγ2(τ0)| = |gγ1(τ0)|, τ0

cond(A)

1

kSk → 1 ζ → ∞

aii =6 0 i = 1,...,m

(n+1)

B = diag(a11,...,amm)

= b x(n+1) = (E B−1A)x(n) + B−1b, A

,

.

x(0)

n := 0

x(1)

Ax = b ε

n

N

n > N

A Ax = b aii =6 0

(n + 1)

i

+ ...
= b1
+ ... + a2mxm(n) = b2

...................................................

.

m = 2 (x1,x2)

,

I

,

II

x(0)

n := 0

i 1 m

n := n + 1

Ax = b

x

A = A> 0

.

Φ(x) = (Ax b,Ax b) x Rm

x

F(x) = F(x1,x2,...,xm).

F(x)

x1

ϕ1(x1) = F(x1,x2(n),...,xm(n)),

x(1n+1)

.

x2

.

(n + 1)

A = A> 0

C = 0

a1

A1(x(1)1 ,x(1)2 )

C

Ax = b

Ax = b A = A> 0

k

k k n + 1

x(kn+1)

.

.

.

Xk1 aikx(in+1) + akkxk(n+1) + Xm aikxni = bk.

i=1 i=k+1

A = A> 0

F(x) x

grad

x(n+1)

x(n+1) = x(n) − αn gradF(x(n)), αn

x(n+1)

gradF(xn) αn := αn/2

x(n+1)

αn

αn N

x(n+1)

ε ε

,

,

αn |ϕ(αn)|

ϕ(αn) = F(x(n+1)) = F(x(n) − αn gradF(x(n))).

αn A = A> 0

grad

.

αn

Ax = b A = A> 0

A0 = (x01,x02)

gradF(x0) A0A1

A0A1

(x11,x12) A1

A0A1

A = A> 0