Допустим, что
не содержится в . Тогда - собственная в подгруппа и . Так как и - -группа, то - группа, нечетного порядка. Подгруппа имеет порядок и - простое число. Поэтому и теперь , а фактор-группа будет разрешимой как произведение двух нильпотентных подгрупп. Противоречие.Следовательно,
содержится в и из самоцентрализуемости и нильпотентности получаем, что - -группа для наибольшего простого , делящего порядок . Из теоремы 2.1 получаем, что , a . Но теперь - подгруппа непримарного индекса. Поэтому она сверхразрешима, а так как ее порядок равен , то нильпотентна, и опять не самоцентрализуема. Противоречие. Теорема доказана полностью.Доказательство следствия. Пусть
- конечная неразрешимая группа, в которой все подгруппы непримарного индекса сверхразрешимы. Если - несверхразрешимая в подгруппа, то , где - простое число. Теперь для силовской -подгруппы из , т.е. группа удовлетворяет условию теоремы. Поэтому или , где - нильпотентная группа. Если , то в имеется несверхразрешимая подгруппа индекса . Так как этот индекс должен быть примарен, то или , поэтому или , а - либо -группа, либо -группа. Если . то в имеется несверхразрешимая подгруппа Шмидта порядка 24, а ее индекс равен и должен быть примарным, т.е. должна быть -группой. Следствие доказано.Пусть
- некоторое множество простых чисел, а - дополнение к во множестве всех простых чисел. Конечная группа называется -обособленной или -разрешимой , если каждый ее главный фактор является либо -группой, либо -группой. В силу теоремы Фейта-Томпсона о разрешимости групп нечетного порядка каждая конечная -обособленная группа либо -разрешима, либо -разрешнма. Поэтому для -обособленной группы справедливы - и -силовские теоремы . Отметим только, что -обособленная группа не обязана быть -обособленной, где . Через обозначается наибольшая нормальная -подгруппа конечной группы , а через - совокупность всех простых делителей порядка .Теорема 1. Если - -подгруппа, субнормальная в некоторой -холловской подгруппе конечной -обособленной группы , то .
Следствие. Если - конечная -обособленная группа с нильпотентной -холловской подгруппой, то для любой -подгруппы .