Итак, если
, то изоморфна , где и - простые числа.Пусть теперь
. Предположим, что не является минимальной нормальной в подгруппой, и пусть - минимальная нормальная в подгруппа, содержащаяся в . По индукции, , где - нильпотентна, a изоморфна или . Так как , то - собственная в подгруппа, и для ее прообраза в группе по индукции получаем, что , где или . Подгруппа характеристична в , a нормальна в , поэтому нормальна в . Так как и , то и . Поскольку для несверхразрешимой подгруппы из существует нильпотентная подгруппа такая, что , то будет нильпотентной подгруппой.Теперь рассмотрим случай, когда
- минимальная нормальная в подгруппа. Предположим, что коммутант - собственная в подгруппа. Так как , то . Из минимальности получаем, что и . Так как , где и - простые числа, то в этом случае теорема доказана.Итак, пусть
. Если - собственная подгруппа в своем централизаторе, то из простоты следует, что содержится в центре . Теперь группу изоморфна или по теореме VI.25.7 .Пусть
самоцентрализуема. Поскольку разрешима, то - -группа для некоторого простого . Допустим, что существует простое , делящее порядок , и пусть - силовская -подгруппа из . Если подгруппа сверхразрешима, то нильпотентна и не самоцентрализуема. Если не сверхразрешима, то по условию теоремы существует нильпотентная подгруппа такая, что . Но теперь будет разрешимой как произведение двух нильпотентных - подгрупп, противоречие. Итак, - наибольшее простое число, делящее порядок .