Если
трижды транзитивна, то или по теореме II.3.13 , и поэтому в должна существовать -холловская подгруппа. Противоречие. Значит, .Для
подгруппа не примитивна, поэтому или 1. Случай исключается теоремой 1 , а при порядок делится на и -холловская подгруппа из содержит элемент порядка 21, что в невозможно.Для
порядок равен и . В нет элементов порядка 21, поэтому не делит порядок , и -холловская подгруппа в имеет порядок и нильпотентна. Значит, содержит перестановку с циклами длины 5, 3, 1 и , a . Но тогда примитивна, а 7 не делит . Противоречие.Для
порядок равен и . Ясно, что делит , а в есть элемент порядка 15 с циклами длины 5 и 3. Так как , то и содержит две орбиты: длины 5 и длины 3. Это означает, что изоморфна разрешимой подгруппе из , т.е. изоморфна подгруппе из . По теореме 1 порядок делит . Поэтому , но содержит транспозицию. Противоречие. Случай рассмотрен полностью.Для
порядок равен . Пусть 5 делит порядок . Так как в нет подгрупп порядка и , то и 7 не делят . Если 3 делит порядок , то в есть элемент порядка 15, что для невозможно. Итак, делит и в есть -холловская подгруппа. Противоречие. не является -факторизуемой (, с 73). Порядок равен , и в нет элементов порядка 10 и 15. Поэтому можно считать, что , где или 4, а или 3. Если , то состоит из четных перестановок и будет -факторизуемой. Противоречие. Значит, , а так как в все элементы порядка 4 сопряжены, то в нет элементов порядка 4 по лемме , и силовская 2-подгруппа в элементарная абелева. Орбита подгруппы имеет длину 5, поэтому транзитивна, но не примитивна. Теперь 3-замкнута и можно считать, что . В этом случае и опять . Противоречие.Следовательно, при
группы и не являются -факторизуемыми. Элементарные вычисления дают требуемые факторизации и .