Предположим, что все
-максимальные подгруппы группы единичны. Тогда порядок каждой -максимальной подгруппа группы является делителем простого числа. Следовательно, любая максимальная подгруппа группы либо нильпотентна (порядка или ), либо является ненильпотентной подгруппой и имеет порядок . Значит, все максимальные подгруппы сверхразрешимы. Но ввиду теоремы , мы получаем, что разрешима. Это противоречие показывает, что в группе существует неединичная -максимальная подгруппа . Пусть - максимальная подгруппа группы , содержащая . Тогда для любого , . Если , то ввиду леммы , . Полученное противоречие показывает, что . Тогда , что влечет . Следовательно, - неединичная нормальная подгруппа в и поэтому группа непроста.(2) Для любой неединичной нормальной в подгруппы факторгруппа разрешима (это прямо вытекает из леммы (3)).
(3) Группа имеет единственную минимальную нормальную подгруппу и , где - такая максимальная в подгруппа, что .
Пусть
- произвольная минимальная нормальная подгруппа группы . Так как ввиду леммы , класс всех разрешимых групп c -длиной образует насыщенную формацию, то - единственная минимальная нормальная подгруппа в , причем . Пусть - максимальная подгруппа группы такая, что . Ясно, что . Поскольку - единственная минимальная нормальная подгруппа в , то .(4) - разрешимая группа.
Допустим, что
- неразрешимая группа. Тогда и по выбору группы мы заключаем, что - прямое произведение изоморфных простых неабелевых групп. Кроме того, и единичная подгруппа не содержится среди -максимальных подгрупп группы .Пусть
- произвольная -максимальная подгруппа, содержащаяся в . Используя приведенные выше рассуждения, видим, что . Следовательно, порядок любой -максимальной подгруппы группы , содержащейся в , равен простому числу. Ввиду леммы , - разрешимая группа. Пусть - максимальная подгруппа группы , содержащая . Так - простое число, то либо , либо . Пусть имеет место первый случай. Тогда , и поскольку - простое число, то - максимальная подгруппа группы . Из того, что индекс равен простому числу, следует, что - максимальная подгруппа группы и поэтому - -максимальная подгруппа в . Так как - неабелевая подгруппа, то в ней существует неединичная максимальная подгруппа . Понятно, что - -максимальная подгруппа в и поэтому по условию перестановочна с . В таком случае, . Но - собственная подгруппа в и поэтому . Это противоречие показывает, что . Следовательно, . Поскольку - простое число, то - максимальная подгруппа в . Из того, что группа есть прямое произведение изоморфных простых неабелевых групп, следует, что в имеется неединичная -максимальная подгруппа . Тогда -максимальна в и следовательно, . Таким образом . Это влечет . Полученное противоречие показывает, что - разрешимая группа.