Смекни!
smekni.com

Нечіткий метод групового врахування аргументів (стр. 1 из 5)

Курсова робота

Тема: Нечіткий метод групового врахування аргументів


Зміст

Вступ

1 Стан проблеми математичного моделювання та прогнозування технологічних параметрів

1.1 Аналіз математичних моделей технологічних параметрів

1.2Аналіз методів математичного моделювання

1.3 Задачі технологічної підготовки виробництва, що розв’язуються за допомогою математичного моделювання

1.4 Аналіз існуючих методів отримання математичних моделей

2 Нечіткий метод групового врахування аргументів

2.1 Метод групового врахування аргументів як основа нечіткого методу

2.2 Суть нечіткого методу групового врахування аргументів

Висновки

Література


Вступ

Приладобудування одна з найбільш перспективних та розвинутих галузей сучасного промислового виробництва України. Приладобудування має широку номенклатуру виробів, що випускаються. Для технологічного проектування виробництва продукції різної складності, що використовується в різних галузях потрібні великі виробничі потужності, матеріальні та фінансові витрати.

Застосування ЕОМ при рішенні задач технологічного проектування виробництва дозволяє оперувати при оцінці досить складними схемами і формулами, але часто із-за недостатньої формалізації завдань ці залежності неадекватні реальним виробничим процесам. У зв'язку з цим основним методом оцінки рішень і вибору оптимального рішення є моделювання. При моделюванні рішень в даний час широко застосовують методи математичного та імітаційного моделювання. Для цього створюються спеціальні засоби. Методи математичного та імітаційного моделювання реалізуються на ЕОМ.

Таким чином ефективне розв’язання задач технологічного проектування виробництва можливе при наявності адекватних математичних та імітаційних моделей параметрів і показників технологічних процесів виготовлення виробів приладобудування.

Завдання цієї роботи знайти шляхи підвищення продуктивності праці шляхом застосування математичного моделювання, зокрема прогнозування технологічних параметрів, що скорочує час та збільшує продуктивність робити технологів.


1 Стан проблеми математичного моделювання та прогнозування технологічних параметрів і постановка задачі технологічної частини дипломної роботи

1.1 Аналіз математичних моделей технологічних параметрів

З розвитком системних досліджень, з розширенням експериментальних методів вивчення реальних явищ всього більшого значення набувають абстрактні методи, з'являються нові наукові дисципліни, автоматизуються елементи розумової праці. Важливе значення при створенні реальних систем S мають математичні методи аналізу і синтезу, цілий ряд відкриттів базується на чисто теоретичних дослідженнях. Проте було б неправильно забувати про те, що основним критерієм будь-якої теорії є практика, і навіть суто математичні науки базуються в своїй основі на фундаменті практичних знань.

Одночасно з розвитком теоретичних методів аналізу і синтезу удосконалюються і методи експериментального вивчення реальних об'єктів, з'являються нові засоби дослідження. Проте експеримент був і залишається одним з основних і істотних інструментів пізнання. Подібність і моделювання дозволяють по-новому описати реальний процес і спростити експериментальне його вивчення. Удосконалюється і саме поняття моделювання. Якщо раніше моделювання означало реальний фізичний експеримент або побудову макету, що імітує реальний процес, то в даний час з'явився новий вигляд моделювання, в основі яких лежить постановка не тільки фізичних, але також і математичних експериментів.

Пізнання реальної дійсності є тривалим і складним процесом. Визначення якості функціонування великої системи, вибір оптимальної структури і алгоритмів поведінки, побудова системи S відповідно до поставленої перед нею мети – основна проблема при проектуванні сучасних систем, тому моделювання можна розглядати як один з методів, використовуваних при проектуванні і дослідженні великих систем.

Моделювання базується на деякій аналогії реального і уявного експерименту. Аналогія – основа для пояснення явища, що вивчається, проте критерієм істини може служити тільки практика, тільки досвід. Хоча сучасні наукові гіпотези можуть створитися чисто теоретичним шляхом, але, по суті, базуються на широких практичних знаннях. Для пояснення реальних процесів висуваються гіпотези, для підтвердження яких ставиться експеримент або проводяться такі теоретичні міркування, які логічно підтверджують їх правильність. У широкому сенсі під експериментом можна розуміти деяку процедуру організації і спостереження якихось явищ, які здійснюють в умовах, близьких до природних, або імітують їх.

Розрізняють пасивний експеримент, коли дослідник лише спостерігає процес, і активний, коли спостерігач втручається і організовує процес. Останнім часом поширений активний експеримент, оскільки саме на його основі вдається виявити критичні ситуації, отримати найцікавіші закономірності, забезпечити можливість повторення експерименту в різних точках простору досліджень.

У основі будь-якого виду моделювання лежить модель, що базується на деякій загальній якості, яка характеризує реальний об'єкт. Об'єктивно реальний об'єкт має деяку формальну структуру, тому для будь-якої моделі характерна наявність деякої структури, відповідній формальній структурі реального об'єкту, або його частині.

У основі моделювання лежать інформаційні процеси, оскільки саме створення моделі М базується на інформації про реальний об'єкт. В процесі реалізації моделі виходить інформація про даний об'єкт, одночасно в процесі експерименту з моделлю вводиться інформація, що управляє, істотне місце займає обробка отриманих результатів, тобто інформація лежить в основі всього процесу моделювання.


1.2 Аналіз методів математичного моделювання

Перші дослідження в області різання металів в Росії були проведені проф. И.А. Тімі. Його можна вважати основоположником науки про різання металів. Проф. П.А. Афанась’єв і проф. К.А. Зворикін провели цікаві дослідження і розвинули основи теорії різання металів.

Великий об'єм досліджень провів американський інженер, фахівець в області організації і нормування праці Ф.У. Тейлор. Вперше в світі він отримав формули (математичні моделі), що показують вплив різних чинників – умов обробки на швидкість різання. Головна мета досліджень була прикладною: "провести в механічній майстерні найбільш дешевим способом якомога більшу кількість роботи кращої якості".

Ф.У. Тейлор багато разів звертає увагу на складності отримання математичних моделей. При аналізі основної роботи "Мистецтво різати метали" не було виявлено використання статистичних методів. Методика вибору структури формул не приводиться.

Звідси можна зробити висновок – Ф.У. Тейлору необхідно було проявити мистецтво не тільки проведенні досліджень по різанню металів, але і в отриманні формул. Подальші дослідники використовували запропонований Ф.У. Тейлором степеневий вид формул і були вимушені розробляти методологію отримання самих моделей, що описують роботу технологічних систем.

Проф. С.С. Рудник на нараді учених з новаторами виробництва відзначала, що немає достатньо надійних і зручних розрахункових теоретичних формул зусилля і швидкості різання і доводиться користуватися формулами, отриманими експериментальним шляхом.

Раніше в дослідженнях при отриманні математичних моделей шляхом проведення експериментів з об'єктами і процесами був широко використаний метод однофакторного експерименту. У роботах Г.С. Ома, Дж. Клейнена, акад. А.Н. Крилова зустрічаємо рекомендації і згадки про використання так званого методу caeteris paribus, тобто змінювати чинники поодинці при інших рівних умовах.

Після публікації роботи Ф.У. Тейлора на зміну методології однофакторного експерименту в технології машинобудування прийшла методологія багатофакторного експерименту.

"Об'єднання" окремо отриманих однофакторних залежностей в "багатофакторну" модель не дозволяє отримати дійсно багатофакторну математичну модель: це не можна зробити по самій суті зміни тільки одного чинника при всіх постійних решті чинників. Другим недоліком вказаного методу є неможливість встановлення різних взаємодій чинників.

Взаємодії факторів в отримуваних моделях враховував М.М. Зорев.

У роботах Н.С. Равської і П.Р. Родіна з дослідженню процесів обробки металів різанням і різального інструменту для прогнозу і оптимізації критеріїв якості процесів використовується метод групового врахування аргументів (МГВА) і в структуру степеневих залежностей вводяться взаємодії модельованих факторів.

Розробка сучасного інформаційного забезпечення проектування, оптимізації, надійності і інших проблем створення високоякісного ріжучого інструменту в Донбасівській державній машинобудівній академії проводиться під науковим керівництвом Г.Л. Хаєта .

В розробку теоретичних і прикладних проблем математичного моделювання значний внесок внесли: С.А. Айвазян, Б.М. Базров, Н.А. Бородачев, В.П. Бородюк, Н.П. Бусленко, В.А. Вознесенський, В.Н. Вапник, А.Н. Гаврилов, В.М. Глушков, Е.З. Демиденко, А.Г. Івахненко, Н.М. Капустін, П.Г. Кацев, А.И. Кухтенко, Ю.В. Лінник, В.С. Михальович, Н.Н. Моїсеєв, В.В. Налімов, Н.С. Равська, Н.С. Райбман, А.А. Самарський, Л.К. Сизенов, В.И. Скурихін, А.В. Усов, Г.Л. Хаєт, Т. Андерсон, И.Н. Вучков, Н. Дрейпер. М.Дж. Кендалл, Ф. Мостеллер, И.А. Мюллер, С.Р. Рао, Б. Ренц, Дж. Себер, Г. Сміт, А. Стьюарт, Дж. Тьюки, Е. Ферстер, П. Эйкхофф і ін.