Смекни!
smekni.com

Нечіткий метод групового врахування аргументів (стр. 5 из 5)

3. Гьоделівський підхід при самоорганізації моделей. Теорема стверджує, що для будь-якої системи вихідних аксіом (зовнішніх доповнень першого рівня) завжди можна задати таку теорему, для доказу якої недостатньо даної системи аксіом і необхідні нові аксіоми – зовнішні доповнення. Стосовно до моделей самоорганізації ідеї Гьоделя можна інтерпретувати в такий спосіб: по мінімуму заданого зовнішнього критерію можна вирішити всі питання про вибір опорних функцій, структури і параметрів моделі, крім питань, зв'язаних з алгоритмом обчислення і способами використання самих критеріїв.

4. Зовнішні критерії селекції моделей. Рівняння регресії вибирається за критерієм мінімуму незміщеності – несуперечності, відповідно до якого потрібно, щоб моделі, побудовані по частині таблиці A, якнайменше відхилялися від моделей, побудованих по частині B. Критерій мінімуму незміщеності є базовим, тому що несуперечність моделей є обов'язковою властивістю оптимальної моделі.

5. Розбивка таблиці даних на частини. Основний критерій мінімуму незміщеності вимагає розбивки таблиці даних на дві рівні частини A та B. Звичайно таблиця вихідних даних поділяється на три частини: навчальна A, перевірочна B і екзаменаційна вибірка C. Навчальна вибірка використовується для одержання оцінок параметрів моделі (наприклад, коефіцієнтів регресії), а перевірочна – для вибору структури моделі.

6. Гіпотеза селекції. При використанні принципу селекції в кібернетиці необхідно дотримуватися наступних правил:

· для кожного покоління (чи ряду селекції моделі) існує деяка мінімальна кількість комбінацій, які відбираються. Вони називаються свободою вибору і забезпечують збіжність багаторядних селекцій моделі оптимальної складності;

· занадто велика кількість поколінь приводить до індуциту (інформаційна матриця стає погано обумовленою);

· чим складніше задача селекції, тим більше потрібно поколінь для одержання моделі оптимальної складності.

7. Принцип збереження свободи вибору. Свобода вибору забезпечується тим, що на кожний наступний ряд селекції передається не одне рішення, а декілька кращих, відібраних на останньому ряді. Д. Габор сформулював цей принцип таким чином: приймати рішення в даний момент часу необхідно таким чином, щоб у наступний момент часу, коли виникне необхідність у черговому рішенні, зберігалася б свобода вибору рішень.

8. Застосування евристичних методів. Евристичний характер самоорганізації моделей особливо виявляється при виборі опорної функції окремих моделей, критеріїв селекції моделей, способу регуляризації, способу нормування перемінних, конкретній реалізації послідовного збільшення складності моделей-претендентів.

9. Одночасне моделювання на різних рівнях спільності мови математичного опису об'єктів. Основним моментом у цьому принципі є використання багаторівневого моделювання для рішення задачі прогнозування.

Самоорганізація відноситься до емпіричних методів моделювання. Ці методи у своїй області застосування мають деякі переваги в порівнянні з теоретичними і напівемпіричними методами побудови моделей. У тих випадках, коли ми спостерігаємо параметри досліджуваного об'єкта, але не знаємо структури і механізму взаємодії між елементами складної системи, поводження якого визначає значення параметрів, підхід самоорганізації виявляється єдиним надійним засобом побудови моделей прогнозу. За допомогою самоорганізації рішення можна визначити, навіть якщо іншими способами одержати результати неможливо. Моделі, отримані за допомогою самоорганізації, мають специфічну область застосування й особливо ефективні для короткострокового прогнозу. Фізичні моделі, отримані на основі математичної теорії об'єктів, які спостерігаються, можуть мати тільки цілком визначені пізнавальні цілі (ідентифікація і довгостроковий прогноз). Тому побудова моделей відповідно до нових об'єктивних методів самоорганізації уможливлює замість допущень і грубих помилок запропонувати моделі, що ґрунтуються на надійній інформації й отримані за допомогою самоорганізації.


Висновки

Узагальнюючи, можна сформулювати наступні роботи, які було проведено:

· розглянуто проблему моделювання технологічного процесу і прогнозування його параметрів;

· проаналізовано сучасні методи отримання математичних моделей та вибрати ефективні для розв’язання задач прогнозування;

· обґрунтовано доцільність використання нечіткого методу групового врахування аргументів для моделювання та прогнозування технологічних параметрів;

· розроблено алгоритм моделювання за допомогою нечіткого методу групового врахування аргументів;

· виконано програмну реалізацію алгоритму нечіткого методу групового врахування аргументів;

· здійснено порівняльний аналіз чіткого і нечіткого методу групового врахування аргументів;

· виконано апробацію розроблених алгоритмів і програм нечіткого методу групового врахування аргументів при моделюванні і прогнозуванні технологічних параметрів процесу обробки деталей різанням;

· проведено аналіз отриманих результатів і надати відповідні рішення щодо використання нечіткого методу групового врахування аргументів.


Література

1. Советов Б.Я. Яковлев С.А. Моделирование систем: Учеб. для вузов – 3-е изд., перераб. и доп. – М.: Высш. шк., 2001. – 343 с.: ил.

2. Габисония В.Е, Харчев В.Н. Математические аспекты автоматизированного проектирования АН ГССР. Ин-т систем управления. – Тбилиси: Мецниереба, 1988. -110 с.

3. Гроп Д. Методы идентификации систем /Пер. с пнгл. –М.: Мир,1979. – 302 с.

4. Єлейко В.І. Економіко-статистичні методи моделювання і прогнозування: Посібник для студ. екон. спец. – К.:, 1988. – 88 с.

5. Ермаков С.М., Михайлов Г.А. Курс статистического моделирования. Уч. пособие для студ. – М.: Наука, 1976. – 319 с.

6. Лопушенко В.В., Юревич Р.В. Типові математичні моделі в САПР ТП. Навчальний посібник/Львівський політехнічний інститут. – К.:, 1993, -52 с.

7. Математические методы и модели в САПР. Межвуз. сб. научн. тр. -Самара: Самар. авиац. ин-т, 1991. -145 с.

8. Малышев Н.Г. и др. Нечеткие модели для экспертных систем в САПР. – М.: Энергоиздат, 1991. –134 с.

9. Пухов Г.Е., Хатиашвили Ц.С. Модели технологических процессов. – К.: Техніка, 1974. –224 с.

10.Пухов Г.Е., Хатиашвили Ц.С. Критерии и методы идентификации объектов. –К.: Наукова думка, 1979. – 190 с.

11.Рыжов Э.В., Горленко О.А. Математические методы в технологических исследованиях. – К.: Наукова думка, 1990. –183 с.

12.САПР. Общие принципы разработки математических моделей объектов проектирования: Методические рекомендации. – М.: ВНИИИНМАШ, 1980. -190 с.

13.САПР. Общие принципы разработки математических моделей объектов проектирования: Методические рекомендации. – М.: ВНИИИНМАШ, 1980. -120 с.

14.Статистические методы для ЭВМ Под ред. К. Энслейна, Э. Рэлстона, Г.С. Уилфа. – М.: Наука, 1986.

15.САПР. Общие принципы разработки математических моделей объектов проектирования в машиностроении. Нормативный материал МПК по ВТ: НМ МПК по ВТ 102-86. – М.: Изд-во стандартов, 1986. -20 с.

16.САПР. Типовые математические модели объектов проектирования в машиностроении: Метод. указания. РД 50-464-84. – М.: Изд-во стандартов, 1985. -202 с.

17.Смит Джон М. Математическое и цифровое моделирование для инженеров и исследователей. – М.: Машиностроение, 1980. –271 с.

18.Скурихин В.И. и др. Математическое моделирование. – К.: Техніка, 1983. -270 с.

19.Старостин В.Г., Лелюхин В.Е. Формализация проектирования процессов обработки резанием. – М.: Машиностроение, 1986. – 133 с.

20.Цыпкин Я.З. Основы информационной теории идентификации. – М.: Наука, 1984. – 320 с.

21.Зайченко Ю.П. Основи проектування інтелектуальних систем. Навчальний посібник . – К.: Видавничий дім «Слово», 2004. – 352 с.

22.Митрофанов С.П., Куликов Д.Д., Миляев О.Н., Падун Б.С. Технологическая подготовка гибких производственных систем. /Под общ. ред. С.П. Митрофанова. – Л.: Машиностроение. Ленингр. отделение, 1987. – 352 с.

23.Душинський В.В., С.Г. Кравченко. Моделювання й оптимізація в машинобудуванні.: Навч. Посібник – К.: НМК ВО, – 304 с. – Рос. мовою.

24.Радченко С.Г. Математичне моделювання та оптимізація технологічних систем: Навч.-метод. посіб. – К.: ІВЦ «Політехніка», 2001. – 88с. : іл..

25.Ивахненко А.Г. Моделирование сложных систем: (информационный подход). – К.: Вища шк. Головне изд-во, 1987. 63 с.

26.Справочник по типовым программам моделирования. /Ивахненко А.Г., Копа Ю.В., Степашко В.С. и др.; Под ред. А.Г. Ивахненко. – К.: Техника, 1980. – 184 с., ил. – Библиогр.: с 179 – 180.

27.Ивахненко А.Г. Долгосрочное прогнозирование и управление сложными системами. – К.: Техника, 1975. – 312 с.

28. Зайченко Ю.П. Нечеткий метод индуктивного моделирования в задачах прогнозирования макроэкономических показателей. – Системні дослідження та інформаційні технології. 2003. №3.