Билет №1Пусть в обл. P плоскости XOY задана некоторая фун-ия z=f(x;y). Разобъём обл. P на n частичных обл. Рi , где i=1…n, возмём произвольную точку обл. (xI;hI) Î Рi , l - наиболь-ший диаметр чатичных обл. Построим частичную сумму – сумму Римена. | Вопрос №3 Пусть в плоскости XOY задана плоскость Д, ограничен-ная следующими кривыми: y=j1(x) a £ x £ a – снизу; y=j2(x) a £ x £ b – сверху; x = a – слева; x = b – справа; Тогда имеет место следующая теорема. Теорема: Если функция f(x;y) задана в области Д такова, что существует двойной интеграл Доказательство: | Вопрос №5 Формула Грина. Доказательство: Рассмотрим двойной интеграл, стоящий справа в формуле(1). Т.к. под интегралом стоит непрер. функция, то такой двойной интеграл существует, также существует одномерный интеграл Вычисление площадей через крив интеграл |
Вопрос №6 Неприрывную кривую назыв. простой кривой (жордановой), если она не имеет точек самопересечения. Областью называется всякое открытое связаное мн-во, т.е. такое мн-во всякая точка кот. явл. внутренней и любые две точки этого мн-ва можно соединить непрерывной кривой все точки кот. принадлежат данному мн-ву. Область называется односвязной областью, если внутренность всякой замкнутой кривой содержит только точки данного мн-ва. Теорема 1. Пусть Д ограниченная односвязная область пл-ти x и y, тогда для того чтобы криволинейный интеграл f(x,y)eД. Док-во: Пусть во всей области Д вып. Равенство (2) и Г произвольная простая замкнутая кривая принадлеж. области Д. Обознач. Через обл. Д1 кот. огранич. Эта кривая Г. Применим к этой области формулу Грина: | Вопрос №4 Пусть заданы 2 плоскости с введенными в прямоугольник декартовыми системами координат xi=x(Ui,Vi) yi=y(Ui,Vi) И того, что интеграл от функции f(x,y)dxdy сущ., то $ lim sn(f) и этот lim не зависит от выбора точек в обл. Di, но тогда в качестве f(xi,yi) может быть взята точка | Вопрос №2 Теорема: Пусть z = f(x,y) – ограниченная функция, заданная на прямоугольнике R = [a,b;c,d], и существует двойной интеграл по этому прямоугольнику Доказательство: Разобьем отрезки ab и cd отрезками a=x0<x1<…<xn=b, c=y0<y1<…<yn=d. Рассмотрим теперь частичный прямоугольник Rik=[xi,xi+1;yi,yi+1] mik=inf f(x,y) Mik=sup f(x,y) Rik Rik На промежутке [xi;xi+1] возьмём точку x. Будем рас- сматривать точки, лежащие на прямой x = x. Получаем следующее неравенство mik£ f(x;y)£ Mik yk£ y£ yk+1 Проинтегрируем его по отрезку [yk; yk+1] |
7.Независемость криволинейного интегр. от пути интегрирования. Теор.1 и 2. Теорема 1. Пусть D – ограниченная одно-связанная область плоскости XOY тогда что бы криволинейный интеграл | 9.Параметрические ур-я поа-ти, касательная плос-ть, нормаль, направляющие косинусы нормали. Пусть поверхность задана параметрическими уравнениями :x=x(U,V) ; y=y(U,V); z=z(U,V) и функции x,y,z непрерывны и имеют непрерывные частные произвольные. Рассмотрим матрицу На поверхности берём точки U0(x0,y0,z0) которая является образом (U0,V0) | Билет 12 Задача о вычислении массы пространств-го тела. Пусть в трехмерном пространстве задано тело D, причем в точках этого тела определены некоторые массы и известна плотность распределения массы, кот. явл-ся ф-цией трех переменных U=R(x,y,z). Разобьем это прост-ное тело некоторыми гладкими пов-ми на конечное число областей D1, D2,…,Dn. В каждой области Di произвол. выберем некот. точку (x,h,e)Î Di. Плотность массы в этой точке – это R(xi,hi,ei). Будем считать, что ф-ция R явл-ся непрерывной, а разбиение достат. мелким так, что значения ф-ции внутри области Di не слишком отличаються от значений ф-ции R в выбранной точке. Т.е. будем считать, что в области Di плотность массы одна и та же и равна числу R(xi,hi,ei). Тогда очевидно масса, заключенная в обл. Di , будет равняться R(xi,hi,ei) * DV. Тогда приближенное значение массы для всей области равна S R(xi,hi,ei)*DVi Пусть l - наибольший из диаметров Di – тых областей, а тогда масса , заключенная в области равна m=lim(l®0) S R(xi,hi,ei) * DVi Пусть теперь задано пространств. тело D. В точках этого тела определена ф-ция U=f(x,y,z). Разобьем это тело на конечное число Di –тых (i=1,2,3,…). В каждой области Di выберем произвол. точку (xi,yi,zi) и составим интегральную sn=S ò(xi,yi,zi) * DVi Если сущ. предел и он конечный и он не зависит от способа деления обл. D на части и выбора точек (xi,yi,zi) , то этот предел называют тройным интегралом по обл.D от ф-ции f(x,y,z) lim(l®0)sn=òòò f(x,y,z)dx dy dz Следовательно m=òòòR(x,y,z)dxdydz Св-ва тройного интеграла аналогично св-м двойного интеграла 1) Всякая интегрируемая в обл. D ф-ция ограничена в этой области. 2) Могут быть построены суммы Дарбу верх St=S Mi * DVi низ st=S mi * DVi 3) Необходимо и достаточное условие сущ. интеграла lim(l®0)( St-st)=0 4) Как и в случае двойного интеграла сущ. тройной интеграл от любой непрерывной ф-ции, заданной в обл. D. Однако тройной интеграл сущ. и в случае, когда ф-ция f(x,y,z) имеет разрывы 1-го рода на конечном числе пов-тей данного тела D. 5)Тройной интеграл обладает св-вами линейности и аддетивности òòòDfdx = òòòD1fdx + òòòD2 , где D=D1ÇD2 6)Если сущ. тройной интеграл от ф-ции f, то сущ. интеграл по модулю и существует равенство ôòòòô£ òòòôfôdv Если функция fв области D ограничена какими-то числами m £ f £ М , то для тройного интеграла справидливо неравенство mVd £òòò ¦dv£M VD 7) Имеет место теорема о среднем , т.е. если функция ¦(x,y,z) не-прерывная в области D , то справедливо равенство òòò ¦dv = ¦ (X0 , Yo , Z0) (X0 , Yo , Z0)ÎD Ввычесление тройного интеграла по параллепипеду . 1. Пусть функция ¦(x , y ,z) задана на параллепипеде R[ a ,b ; c , d; e, f]. Обозначим через Gи D прямоугольника D[ c , d; e, f] и [a,b;c,d] . Тогда если существует тройной интеграл по параллепипеду от функции ¦(x,y,z) и существует для любого x из [a,b] двойной интеграл по прямоугольнику D òò ¦(x,y,z)dydz то существует òòò¦dv [N1] =òdxòò¦(x,y,z)dydz Если для " zÎ[e,f] $ òò ¦(x,y,z)dxdy,то òòò ¦dv = òdxòò¦(x,y,z)dydz = òòdxdyò¦(x,y,z) . Если функция ¦(x,y,z) непрерывна в области D,т.е. на параллепипеде , то все указаные ранее интеграмы существует и имеет | ||
Продолжение №12 Если теперь обл. D будет иметь следующее строение. Пусть обл. D, кот. явл. проэкцией тела на пл-ть XOY, ограничена следующими линиями: отрезками прямых x=a и x=b , и кривыми y=j1 (x) и y=j2(x). Тогда тройной интеграл: | Вопрос №10 | 8.Касательная пл-ть к пов-ти и её ур-е в случае явного и не явного задания пов-ти. 1) не явное. Пусть поверхность задаётся не явным уравнением F(x,y,z)=0. Эта функция непрерывна и имеет непрерывные частные производные. Здесь рисунок. Зафиксируем любую точку M0(x0,y0,z0). Рассмотрим кривую проходящую через эту точку. Пусть уравнение этой кривой будет x=x(t) y=y(t) z=z(t) где |
Вопрос№11 Если пов-ть Р задана параметрич. ур-ями | Билет №14 Поток вектора через поверхность Пусть задана некоторая область(тело) ДÌR3 Пусть над этой областью определено поле вектора | Вопрос №16 Общий вид диф уравнения F(x, y, y’)=0 y’=f(x,y) (1). Решением дифференциальное уравнение первого порядка называется всякая функция y=j(x), которая будучи подставлена в данное уравнение обращает его в тождество. j’(x)= f (x, j(x)); | ||
Вопрос №17 Диф. ур-ем с разделёнными перемеными принято называть ур-е вида (1): | Билет №15 Дивергенция , циркуляция ротор вектора Пусть задана некоторая пространственная область Д над которой определенно поле вектора Пусть над этим телом определенно поле вектора Рассуждая как и прежде можно показать , что | Билет №13 Криволинейные интегралы в пространстве и объем тела в криволинейных координатах Пусть в пространстве OXYZзадано тело G.И пусть в другом пространстве OUVW задано тело Д И пусть заданы 3 функции |
Вопрос №18 Пусть задана функция | Билет№20 Линейные диф. Уравнения1- порядка. Метод подстановки. Линейным уравнением 1-го порядка называют уравнения вида: (1) y’+yP(x)=Q(x) – где P(x) и Q(x) некоторые функции переменной х , а y’ и y входят в уравнение в 1 степени. 1.Метод подстановки: Будем искать решение уравнения 1 в виде произведения y=U(x)V(x) при чём так, что мы можем подобрать одну из функций по желанию, а вторую так, чтобы удовлетворяла (1) : y’=U’V+UV’ ; U’V+UV’+UV*P(x)=Q(x) ; U’V+U(V’+V*P(x))=Q(x) Найдём V ,чтобы V’+VP(x)=0 : | Билет №22 Уравнение Бернулли и Рикотти и их решение. Уравнение Бернулли – это диф. Ур-е следующего вида : Обозначим через Уравнение Рикотти – это диф. следующего вида |
Билет №23 Уравнение в полных дифференциалах и их решение Пусть задано диф. ур-е ел. Вида: | Билет№21. Метод вариации производной постоянной при решении линейного диф. уравнения 1-го порядка. y’+P(x)y=Q(x) (1) -задано линейное неоднородное уравнение. Рассмотрим соотв. ему однородное уравнение y’=P(x)y=0 (2). Найдём общее решение: Будем искать решение в том же виде, что и однородного, только считая с не произвольной константой ,а функцией от х : | Билет№19 Уравнения, приводящиеся к однородным. К таким уравнениям относят уравнения вида: |
Билет №24 Интегральный множитель и его нахождение Пусть задано диф. ур-ние в диф. форме вида : | Вопрос №26. Уравнение вида: f(x,y¢)=0. 1) Предположим, что данное уравнение можно разрешить относительно y¢; y¢=fk(x), k=1,2,… | Билет 28. Ур-ние Логранжа Ур. Лог.имеет следующий вид |
Билет 27. Уравнение вида F(y,y`)=0 1)Пусть ур-ние разрешимо относ. y`,тогда y`=fk(y) Разрешим относ. y, где к=1,2…. | Билет 25. Рассмотрим несколько случаев: 1.Пусть задано следющее диф. ур-ние: |