В нижней строке импликантной матрицы крестики отсутствуют и, следовательно, импликанта x1x3x4 не поглощает ни одну из конституент единицы функции j0(x1, x2, x3, x4). Это связано с тем, что данная импликанта образовалась в результате склеивания конституент функции j1(x1, x2, x3, x4), которые в функцию j0(x1, x2, x3, x4) не входят.
Чтобы найти простейшее представление неполностью определенной ПФ, кроме минимальных дизъюнктивных форм следует получить минимальные конъюнктивные нормальные формы и выбрать из них ту, которая содержит наименьшее число букв.
Алгоритм получения минимальных конъюнктивных форм подобен рассмотренному алгоритму получения минимальной ДНФ и заключается в следующем.
Пусть задана неполностью определенная функция f(x1, x2, …, xn). Тогда для получения минимальной КНФ достаточно найти сокращенную КНФ эквивалентной функции j0(x1, x2, …, xn), а функцию j1(x1, x2, …, xn) записать в СКНФ. Затем следует составить ипликантную матрицу, включив в нее все конституенты нуля функции j1(x1, x2, …, xn) и все члены сокращенной конъюнктивной нормальной формы функции j0(x1, x2, …, xn). По импликантной матрице рассмотренным выше способом можно получить минимальные КНФ функции f(x1, x2, …, xn).
Пример. Найти минимальную КНФ функции, записанной таблицей.
x1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
x2 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
x3 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
x4 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
f(x1, x2, x3, x4) | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 |
СКНФ эквивалентной функции j1(x1, x2, x3, x4):
СКНФ функции
Сокращенная КНФ функции j0(x1, x2, x3, x4)
Импликантная матрица имеет вид:
Импли- канты | ||||||
1 | 2 | 3 | 4 | 5 | ||
х | х | х | ||||
х | х | х | ||||
х |
Минимальная КНФ функции f(x1, x2, x3, x4)
Рассмотренная функция имеет четыре минимальные ДНФ
Здесь больше букв, чем в МКНФ.
ЛИТЕРАТУРА
1. Белоусов А.И., Ткачев С.Б. Дискретная математика: Учебник для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: изд-во МГТУ им. Н.Э. Баумана, 2001.– 744 с. (Сер. Математика в техническом университете; Вып XIX).
2. Горбатов В.А. Фундаментальные основы дискретной математики. Информационная математика.– М.: Наука, Физматлит, 2000.– 544 с.– ISBN 5-02-015238-2.
3. Петрова В.Т. Лекции по алгебре и геометрии. Учебник для ВУЗов: в 2 ч.– М.: Гуманит. изд. центр ВЛАДОС.– ч. 1 – 312 с., ч. 2 – 344 с. ISBN 5-691-00077-2. ISBN 5-691-00238-4 (I), ISBN 5-691-00239-2 (II).
4. Зарубин В.С. Математическое моделирование в технике: Учеб. для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.– 496 с. (Сер. Математика в техническом университете; вып. XXI, заключительный).