ВВЕДЕНИЕ
ЗАДАНИЕ
ПОДГОТОВКА ПЛАНА ПРОВЕДЕНИЯ ОДНОФАКТОРНОГО ЭКСПЕРИМЕНТА
ПЛАН ЭКСПЕРИМЕНТА И РЕЗУЛЬТАТЫ ОПЫТОВ
УРАВНЕНИЕ РЕГРЕССИИ
РЕЗУЛЬТАТЫ ОПЫТОВ В ГРАФИЧЕСКОМ ВИДЕ
ПРОВЕРКА АДЕКВАТНОСТИ И РАБОТОСПОСОБНОСТИ МОДЕЛИ
ВЫВОД
ЛИТЕРАТУРА
Современный этап научных исследований характеризуется тем, что наряду с классическим натурным экспериментом все шире применяется вычислительный эксперимент, проводимый на математической модели с помощью ЭВМ. Проведение вычислительного эксперимента значительно дешевле и мобильнее, чем проведение аналогичного натурного, и в ряде случаев вычислительный эксперимент является единственным возможным инструментом исследователя.
Математический аппарат теории планирования и обработки результатов экспериментов в полной мере может быть применен как к натурным, так и к вычислительным экспериментам. В данной контрольно-курсовой работе под проводимым экспериментом будем понимать эксперимент на математической модели, выполненный при помощи ЭВМ.
Основная задача теории планирования и обработки результатов экспериментов – это построение статистической модели изучаемого процесса в виде Y = f(X1, X2,…Xk), где X – факторы, Y – функция отклика. Полученную функцию отклика можно использовать для оптимизации изучаемых процессов, то есть определять значения факторов, при которых явление или процесс будет протекать наиболее эффективно.
Объект исследования – одноцилиндровый четырехтактный дизельный двигатель ТМЗ-450Д.
Предмет исследования– процесс функционирования двигателя.
Цель исследования – анализ влияния одного из параметров двигателя на показатели его работы и получение соответствующей функциональнойзависимости
Область планирования фактора X: Xmin = 0,012 м, Xmax = 0,055 м.
План проведения эксперимента:
№ опыта | xj |
1 | -1 |
2 | -0,8 |
3 | -0,6 |
4 | -0,4 |
5 | -0,2 |
6 | 0 |
7 | 0,2 |
8 | 0,4 |
9 | 0,6 |
10 | 0,8 |
11 | 1 |
Используя приведенные исходные данные и программу расчета функционирования двигателя, проанализировать влияние радиуса кривошипа (X) на величину максимальной температуры (Y) рабочего тела в цилиндре двигателя. Получить функциональные зависимости между указанными величинами.
Используя указанный в задании план проведения эксперимента в кодовом виде, а также область планирования фактора Х (Хmin, Хmax), подготовим план проведения данного однофакторного эксперимента.
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; .где
- интервал (шаг) варьирования фактора;-натуральное значение основного уровня фактора;
- кодированное значение фактора x; - натуральное значение фактора в j-ом опыте, где j = 1, 2,…, N; N – число опытов.В дальнейших расчетах будем использовать только натуральные значения факторов и функции отклика.
Используя выданную преподавателем программу расчета (математическую модель) проведем на ЭВМ необходимое количество опытов N. Полученные результаты представим в виде таблицы 1.
Табл. 1
№ опыта | Xj | Yj |
1 | 0,012 | 3601,8348 |
2 | 0,0163 | 2712,4310 |
3 | 0,0206 | 2195,4343 |
4 | 0,0249 | 1855,3637 |
5 | 0,0292 | 1626,8644 |
6 | 0,0335 | 1461,2450 |
7 | 0,0378 | 1339,577 |
8 | 0,0421 | 1250,5135 |
9 | 0,0464 | 1173,9877 |
10 | 0,0507 | 1126,4606 |
11 | 0,055 | 1092,5573 |
Получим функциональную зависимость Y = f(X) (уравнение регрессии) с помощью метода наименьших квадратов (МНК). В качестве аппроксимирующих функций использовать линейную (Y = a0 + a1X) и квадратичную зависимости (Y = a0 + a1X + a2X2). Посредством МНК значения a0, a1 и a2 найдем из условия минимизации суммы квадратов отклонений измеренных значений отклика Yj от получаемых с помощью регрессионной модели, т. е. путем минимизации суммы:
.Проведем минимизацию суммы квадратов с помощью дифференциального исчисления, путем приравнивания к 0 первых частных производных по a0, a1 и a2.
Рассмотрим реализацию метода наименьших квадратов применительно к уравнению вида Y = a0 + a1X. Получим:
; .Выполнив ряд преобразований, получим систему нормальных уравнений метода наименьших квадратов:
Решая эту систему, найдем коэффициенты a1 и a0:
; .Для квадратичной зависимости Y = a0 + a1X + a2X2 система нормальных уравнений имеет вид:
Вычислим из N опытов необходимые суммы и данные представим в виде таблицы 2.
Табл. 2
№ опыта | Xj | Yj | Xj2 | XjYj | Xj2Yj | Xj3 | Xj4 |
1 | 0,012 | 3601,8348 | 0,000144 | 43,222017 | 0,5186642 | 0,0000017 | 0,000000020736 |
2 | 0,0163 | 2712,4310 | 0,0002656 | 44,212625 | 0,7204216 | 0,0000043 | 0,0000000705433 |
3 | 0,0206 | 2195,4343 | 0,0004243 | 45,225946 | 0,9315227 | 0,0000087 | 0,0000001800304 |
4 | 0,0249 | 1855,3637 | 0,00062 | 46,198556 | 1,1503254 | 0,0000154 | 0,0000003844 |
5 | 0,0292 | 1626,8644 | 0,0008526 | 47,50444 | 1,3870645 | 0,0000248 | 0,0000007269267 |
6 | 0,0335 | 1461,2450 | 0,0011222 | 48,951707 | 1,6398091 | 0,0000375 | 0,0000012593328 |
7 | 0,0378 | 1339,577 | 0,0014288 | 50,63601 | 1,9139876 | 0,000054 | 0,0000020414694 |
8 | 0,0421 | 1250,5135 | 0,0017724 | 52,646618 | 2,2164101 | 0,0000746 | 0,0000031414017 |
9 | 0,0464 | 1173,9877 | 0,0021529 | 54,473029 | 2,52747781 | 0,0000998 | 0,0000046349784 |
10 | 0,0507 | 1126,4606 | 0,0025704 | 57,111552 | 2,8954543 | 0,0001303 | 0,0000066069561 |
11 | 0,055 | 1092,5573 | 0,003025 | 60,090651 | 3,3049858 | 0,0001663 | 0,000009150625 |
Σ | 0,3685 | 19436,266 | 0,0143782 | 550,27311 | 19,206122 | 0,0006174 | 0,0000282173998 |
Для уравнения регрессии вида Y = a0 + a1X найдем коэффициенты a1 иa0:
. .Для уравнения регрессии вида Y = a0 + a1X + a2X2 найдем коэффициенты a1 , a2 иa0:
Решим систему нормальных уравнений способом Крамера:
.
.
.
Найдем определитель (det) матрицы:
.