Смекни!
smekni.com

Статистическая обработка результатов прямых многоразовых измерений с независимыми равноточными (стр. 2 из 2)

Таблица 4

U(1)=169.59 U(16)=169.95
U(2)=169.60 U(17)=169.95
U(3)=169.67 U(18)=170.01
U(4)=169.73 U(19)=170.02
U(5)=169.73 U(20)=170.17
U(6)=169.74 U(21)=170.20
U(7)=169.76 U(22)=170.20
U(8)=169.77 U(23)=170.21
U(9)=169.83 U(24)=170.26
U(10)=169.84 U(25)=170.30
U(11)=169.84 U(26)=170.33
U(12)=169.88 U(27)=170.35
U(13)=169.91 U(28)=170.35
U(14)=169.95 U(29)=170.41
U(15)=169.95 U(30)=170.50

б) Для крайних членов упорядоченного ряда U1 и U15, которые наиболее удалены от центра распределения (определяемого как среднее арифметическое Ū этого рядя) и поэтому с наибольшей вероятностью могут содержать грубые погрешности, находим модули разностей

=
(В) и
=
(В), и для большего из них вычисляем параметр:

в) Для n=30,

из таблицы 4 определим
=3,071.

Так как ti< tT, поэтому грубых результатов нет.

Вычислим несмещенную оценку СКО результата измерения в соответствии с выражением:

(В).

Определим доверительные границы

случайной составляющей погрешности измерений с многократными наблюдениями в зависимости от числа наблюдений n 30 в выборке, не содержащей анормальных результатов, по формуле:
, где Z– коэффициент по заданной доверительной вероятности Р=0,99 ; Z =2,58

(В).

Определим доверительные границы

суммарной не исключённой систематической составляющей погрешности результатов измерений с многократными наблюдениями:

(В).

Определим доверительные границы

суммарной (полной) погрешности измерений с многократными наблюдениями.

Так как

, тогда

В.

Запишем результат измерений с многократными наблюдениями:

U= (170,000±0,151) В; Р=0,99