Таблица 4
U(1)=169.59 | U(16)=169.95 |
U(2)=169.60 | U(17)=169.95 |
U(3)=169.67 | U(18)=170.01 |
U(4)=169.73 | U(19)=170.02 |
U(5)=169.73 | U(20)=170.17 |
U(6)=169.74 | U(21)=170.20 |
U(7)=169.76 | U(22)=170.20 |
U(8)=169.77 | U(23)=170.21 |
U(9)=169.83 | U(24)=170.26 |
U(10)=169.84 | U(25)=170.30 |
U(11)=169.84 | U(26)=170.33 |
U(12)=169.88 | U(27)=170.35 |
U(13)=169.91 | U(28)=170.35 |
U(14)=169.95 | U(29)=170.41 |
U(15)=169.95 | U(30)=170.50 |
б) Для крайних членов упорядоченного ряда U1 и U15, которые наиболее удалены от центра распределения (определяемого как среднее арифметическое Ū этого рядя) и поэтому с наибольшей вероятностью могут содержать грубые погрешности, находим модули разностей
= (В) и = (В), и для большего из них вычисляем параметр:в) Для n=30,
из таблицы 4 определим =3,071.Так как ti< tT, поэтому грубых результатов нет.
Вычислим несмещенную оценку СКО результата измерения в соответствии с выражением:
(В).Определим доверительные границы
случайной составляющей погрешности измерений с многократными наблюдениями в зависимости от числа наблюдений n 30 в выборке, не содержащей анормальных результатов, по формуле: , где Z– коэффициент по заданной доверительной вероятности Р=0,99 ; Z =2,58 (В).Определим доверительные границы
суммарной не исключённой систематической составляющей погрешности результатов измерений с многократными наблюдениями:Определим доверительные границы
суммарной (полной) погрешности измерений с многократными наблюдениями.Так как
, тогда В.Запишем результат измерений с многократными наблюдениями:
U= (170,000±0,151) В; Р=0,99