Весьма важным для оценки точности определения зависимой переменной (прогноза) является построение доверительного интервала для функции регрессии или для условного математического ожидания зависимой переменной
, найденного в предположении, что объясняющие переменные приняли значения, задаваемые вектором ).Обобщая соответствующие выражения на случай множественной регрессии, можно получить доверительный интервал для
:где
— групповая средняя, определяемая по уравнению регрессии,ее стандартная ошибка.
При обобщении формул (2.15) и (2.14) аналогичный доверительный интервал для индивидуальных значений зависимой переменной
примет вид:где
.Доверительный интервал для дисперсии возмущений
в множественной регрессии с надежностью = 1 — строится аналогично парной модели по формуле (2.20) с соответствующим изменением числа степеней свободы критерия : .Формально переменные, имеющие незначимые коэффициенты регрессии, могут быть исключены из рассмотрения. В экономических исследованиях исключению переменных из регрессии должен предшествовать тщательный качественный анализ. Поэтому может оказаться целесообразным все же оставить в регрессионной модели одну или несколько объясняющих переменных, не оказывающих существенного (значимого) влияния на зависимую переменную.
Под мултиколлинеарностью понимается высокая взаимная коррелированностъ объясняющих переменных. Мультиколлинеарность может проявляться в функциональной (явной) стохастической (скрытой) формах. При функциональной форме мультиколлинеарности по крайней мере одна из парных связей между объясняющими переменными является линейной функциональной зависимостью. В этом случае матрица Х'Х особенная, так как содержит линейно зависимые векторы-столбцы и ее определитель равен нулю, т.е. нарушается предпосылка 6 регрессионного анализа. Это приводит к невозможности решения соответствующей системы нормальных уравнений и получения оценок параметров регрессионной модели.
Однако в экономических исследованиях мультиколлинеарность чаще проявляется в стохастической форме, когда между хотя бы двумя объясняющими переменными существует тесная корреляционная связь. Матрица Х'Х в этом случае является неособенной, но ее определитель очень мал. В то же время вектор оценок b и его ковариационная матрица К в соответствии с формулами пропорциональны обратной матрице
а значит, их элементы обратно пропорциональны величине определителя . В результате получаются значительные средние квадратические отклонения (стандартные ошибки) коэффициентов регрессии и оценка их значимости по t-критерию не имеет смысла, хотя в целом регрессионная модель может оказаться значимой по F-критерию.Оценки
становятся очень чувствительными к незначительному изменению результатов наблюдений и объема выборки. Уравнения регрессии в этом случае, как правило, не имеют реального смысла, так как некоторые из его коэффициентов могут иметь неправильные с точки зрения экономической теории знаки и неоправданно большие значения. Один из методов выявления мультиколлинеарности заключается в анализе корреляционной матрицы между объясняющими переменными и выявлении пар переменных, имеющих высокие коэффициенты корреляции (обычно больше 0,8).Если такие переменные существуют, то говорят о мультиколлинеарности между ними. Полезно также находить множественные коэффициенты корреляции между одной из объясняющих переменных и некоторой группой из них. Наличие высокого множественного коэффициента корреляции (обычно принимают больше 0,8) свидетельствует о мультиколлинеарности. Другой подход состоит в исследовании матрицы Х'Х. Если определитель матрицы Х'Х близок к нулю (например, одного порядка с накапливающимися ошибками вычислений), то это говорит о наличии мультиколлинеарности. Для устранения или уменьшения мультиколлинеарности используется рад методов. Один из них заключается в том, что из двух объясняющих переменных, имеющих высокий коэффициент корреляции (больше 0,8), одну переменную исключают из рассмотрения. При этом, какую переменную оставить, а какую удалить из анализа, решают в первую очередь на основании экономических соображений. Если с экономической точки зрения ни одной из переменной.Нельзя отдать предпочтение, то оставляют ту из двух переменных, которая имеет больший коэффициент корреляции с зависимой переменной. Другим из возможных методов устранения или уменьшения мультиколлинеарности является использование пошаговых процедур отбора наиболее информативных переменных. Например, вначале рассматривается линейная регрессия зависимой переменной Y объясняющей переменной, имеющей с ней наиболее высокий коэффициент корреляции (или индекс корреляции при нелинейной форме связи). На втором шаге включается в рассмотрение та объясняющая переменная, которая имеет наиболее высокий частный коэффициент корреляции с Y и вычисляется множественный коэффициент (индекс) корреляции. На третьем шаге вводится новая объясняющая переменная, которая имеет наибольший частный коэффициент корреляции с Y, и вновь вычисляется множественный коэффициент корреляции и т.д. Процедура введения новых переменных продолжается до тех пор, пока добавление следующей объясняющей переменной существенно не увеличивает множественный коэффициент корреляции.Многомерный статистический анализ определяется как раздел математической статистики, посвященный математическим методам построения оптимальных планов сбора, систематизации и обработки многомерных статистических данных, направленных на выявление характера и структуры взаимосвязей между компонентами исследуемого признака и предназначенных для получения научных и практических выводов. Многомерные статистические методы среди множества возможных вероятностно-статистических моделей позволяют обоснованно выбрать ту, которая наилучшим образом соответствует исходным статистическим данным, характеризующим реальное поведение исследуемой совокупности объектов, оценить надежность и точность выводов, сделанных на основании ограниченного статистического материала. С некоторыми разделами многомерного статистического анализа, такими, как многомерный корреляционный анализ, множественная регрессия, многомерный дисперсионный анализ. Приведем теперь краткий обзор ряда других методов многомерного статистического анализа, которые уже нашли отражение в статистических пакетах прикладных программ. В первую очередь следует выделить методы, позволяющие выявить общие (скрытые или латентные) факторы, определяющие вариацию первоначальных факторов. К ним относятся факторный анализ и метод главных компонент.