Смекни!
smekni.com

Методы решения уравнений линейной регрессии (стр. 1 из 3)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ

ФИЛИАЛ В Г. ЛИПЕЦКЕ

Контрольная работа

по эконометрике

Липецк, 2009 г.


Задача

По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (Х, млн.руб.)

Y 31 23 38 47 46 49 20 32 46 24
Х 38 26 40 45 51 49 34 35 42 24

Требуется:

1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.

2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков

; построить график остатков.

3. Проверить выполнение предпосылок МНК.

4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).

5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве.

6. Осуществить прогнозирование среднего значения показателя Yпри уровне значимости α=0,01 при Х=80% от его максимального значения.

7. Представить графически фактических и модельных значений Y, точки прогноза.

8. Составить уравнения нелинейной регрессии:

· Гиперболической;

· Степенной;

· Показательной.

Привести графики построенных уравнений регрессии.

9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.

Решение

1. Уравнение линейной регрессии имеет вид:

= а0 + а1x.

Построим линейную модель.

Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( рис. 1).

Рис.1

Используем программу РЕГРЕССИЯ и найдем коэффициенты модели (рис.2)

Рис.2


Коэффициенты модели содержатся в таблице 3 (столбец Коэффициенты).

Таким образом, модель построена и ее уравнение имеет вид

Yт = 12,70755+0,721698Х.

Коэффициент регрессии b=0,721698, следовательно, при увеличении объема капиталовложений (Х) на 1 млн руб. объем выпуска продукции (Y) увеличивается в среднем на 0,721698 млн руб.

2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков SІe; построить график остатков.

Остатки содержатся в столбце Остатки итогов программы РЕГРЕССИЯ (таблица 4).

Программой РЕГРЕССИЯ найдены также остаточная сумма квадратов SSост=148,217 и дисперсия остатков MS=18,52712 (таблица 2).

Для построения графика остатков нужно выполнить следующие действия:

· Вызвать Матер Диаграмм, выбрать тип диаграммы Точечная (с соединенными точками).

· Для указания данных для построения диаграммы зайти во вкладку Ряд, нажать кнопку Добавить; в качестве значений Х указать исходные данные Х (таблица 1);значения Y - остатки (таблица 4).

Рис.3 График остатков

3. Проверить выполнение предпосылок МНК.

Предпосылками построения классической линейной регрессионной модели являются четыре условия, известные как условия Гаусса-Маркова.

· В уравнении линейной модели Y=a+b*X+ε слагаемое ε - случайная величина, которая выражает случайный характер результирующей переменной Y.

· Математическое ожидание случайного члена в любом наблюдении равно нулю, а дисперсия постоянна.

· Случайные члены для любых двух разных наблюдений независимы (некоррелированы).

· Распределение случайного члена является нормальными.

1) Проведем проверку случайности остаточной компоненты по критерию повторных точек.

Количество повторных точек определим по графику остатков: p=5

Вычислим критическое значение по формуле:

.

При

найдем

Схема критерия:

Сравним

, следовательно, свойство случайности для ряда остатков выполняется.

1. Равенство нулю математического ожидания остаточной компоненты для линейной модели, коэффициенты которой определены по МНК, выполняется автоматически. С помощью функции СРЗНАЧ для ряда остатков можно проверить:

.

Свойство постоянства дисперсии остаточной компоненты проверим по критерию Гольдфельда–Квандта.

В упорядоченных по возрастанию переменной X исходных данных (

) выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем.

С помощью программы РЕГРЕССИЯ построим модель по первым четырем наблюдениям (регрессия-1), для этой модели остаточная сумма квадратов

.
Дисперсионный анализ
df SS MS F Значимость F
Регрессия 1 107,7894737 107,7894737 15,67347 0,15751
Остаток 1 6,877192982 6,877192982
Итого 2 114,6666667

С помощью программы РЕГРЕССИЯ построим модель по последним четырем наблюдениям (регрессия-2), для этой модели остаточная сумма квадратов

.
Дисперсионный анализ
df SS MS F Значимость F
Регрессия 1 4,166666667 4,166666667 0,186916 0,707647
Остаток 2 44,58333333 22,29166667
Итого 3 48,75

Рассчитаем статистику критерия:

.

Критическое значение при уровне значимости

и числах степеней свободы
составляет
.

Схема критерия:

Сравним

, следовательно, свойство постоянства дисперсии остатков выполняется, модель гомоскедастичная.

2. Для проверки независимости уровней ряда остатков используем критерий Дарбина–Уотсона

.

Предварительно по столбцу остатков с помощью функции СУММКВРАЗН определим

; используем найденную программой РЕГРЕССИЯ сумму квадратов остаточной компоненты
.

Таким образом,

Схема критерия:

Полученное значение d=2,375, что свидетельствует об отрицательной корреляции. Перейдем к d’=4-d=1,62 и сравним ее с двумя критическими уровнями d1=0,88 и d2=1,32.

D’=1,62 лежит в интервале от d2=1,32 до 2, следовательно, свойство независимости остаточной компоненты выполняются.

С помощью функции СУММПРОИЗВ найдем для остатков

, следовательно r(1)=2,4869Е-14/148,217=1,67788Е-16.

Критическое значение для коэффициента автокорреляции определяется как отношение

Ön и составляет для данной задачи

Сравнения показывает, что çr(1)= 1,67788Е-16<0,62, следовательно, ряд остатков некоррелирован.

4) Соответствие ряда остатков нормальному закону распределения проверим с помощью

критерия:

.

С помощью функций МАКС и МИН для ряда остатков определим

,
. Стандартная ошибка модели найдена программой РЕГРЕССИЯ и составляет
. Тогда:

Критический интервал определяется по таблице критических границ отношения

и при
составляет (2,67; 3,57).