ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
ВСЕРОССИЙСКИЙ ЗАОЧНЫЙ ФИНАНСОВО-ЭКОНОМИЧЕСКИЙ ИНСТИТУТ
ФИЛИАЛ В Г. ЛИПЕЦКЕ
Контрольная работа
по эконометрике
Липецк, 2009 г.
Задача
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн.руб.) от объема капиталовложений (Х, млн.руб.)
Y | 31 | 23 | 38 | 47 | 46 | 49 | 20 | 32 | 46 | 24 |
Х | 38 | 26 | 40 | 45 | 51 | 49 | 34 | 35 | 42 | 24 |
Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков
; построить график остатков.3. Проверить выполнение предпосылок МНК.
4. Осуществить проверку значимости параметров уравнения регрессии с помощью t-критерия Стьюдента (α=0,05).
5. Вычислить коэффициент детерминации, проверить значимость уравнения регрессии с помощью F-критерия Фишера (α=0,05), найти среднюю относительную ошибку аппроксимации. Сделать вывод о качестве.
6. Осуществить прогнозирование среднего значения показателя Yпри уровне значимости α=0,01 при Х=80% от его максимального значения.
7. Представить графически фактических и модельных значений Y, точки прогноза.
8. Составить уравнения нелинейной регрессии:
· Гиперболической;
· Степенной;
· Показательной.
Привести графики построенных уравнений регрессии.
9. Для указанных моделей найти коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Сравнить модели по этим характеристикам и сделать вывод.
Решение
1. Уравнение линейной регрессии имеет вид:
= а0 + а1x.Построим линейную модель.
Для удобства выполнения расчетов предварительно упорядочим всю таблицу исходных данных по возрастанию факторной переменной Х (Данные => Сортировка). ( рис. 1).
Рис.1
Используем программу РЕГРЕССИЯ и найдем коэффициенты модели (рис.2)
Рис.2
Коэффициенты модели содержатся в таблице 3 (столбец Коэффициенты).
Таким образом, модель построена и ее уравнение имеет вид
Yт = 12,70755+0,721698Х.
Коэффициент регрессии b=0,721698, следовательно, при увеличении объема капиталовложений (Х) на 1 млн руб. объем выпуска продукции (Y) увеличивается в среднем на 0,721698 млн руб.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков SІe; построить график остатков.
Остатки содержатся в столбце Остатки итогов программы РЕГРЕССИЯ (таблица 4).
Программой РЕГРЕССИЯ найдены также остаточная сумма квадратов SSост=148,217 и дисперсия остатков MS=18,52712 (таблица 2).
Для построения графика остатков нужно выполнить следующие действия:
· Вызвать Матер Диаграмм, выбрать тип диаграммы Точечная (с соединенными точками).
· Для указания данных для построения диаграммы зайти во вкладку Ряд, нажать кнопку Добавить; в качестве значений Х указать исходные данные Х (таблица 1);значения Y - остатки (таблица 4).
Рис.3 График остатков
3. Проверить выполнение предпосылок МНК.
Предпосылками построения классической линейной регрессионной модели являются четыре условия, известные как условия Гаусса-Маркова.
· В уравнении линейной модели Y=a+b*X+ε слагаемое ε - случайная величина, которая выражает случайный характер результирующей переменной Y.
· Математическое ожидание случайного члена в любом наблюдении равно нулю, а дисперсия постоянна.
· Случайные члены для любых двух разных наблюдений независимы (некоррелированы).
· Распределение случайного члена является нормальными.
1) Проведем проверку случайности остаточной компоненты по критерию повторных точек.
Количество повторных точек определим по графику остатков: p=5
Вычислим критическое значение по формуле:
.При
найдемСхема критерия:
Сравним
, следовательно, свойство случайности для ряда остатков выполняется.1. Равенство нулю математического ожидания остаточной компоненты для линейной модели, коэффициенты которой определены по МНК, выполняется автоматически. С помощью функции СРЗНАЧ для ряда остатков можно проверить:
.Свойство постоянства дисперсии остаточной компоненты проверим по критерию Гольдфельда–Квандта.
В упорядоченных по возрастанию переменной X исходных данных (
) выделим первые 4 и последние 4 уровня, средние 2 уровня не рассматриваем.С помощью программы РЕГРЕССИЯ построим модель по первым четырем наблюдениям (регрессия-1), для этой модели остаточная сумма квадратов
.Дисперсионный анализ | |||||
df | SS | MS | F | Значимость F | |
Регрессия | 1 | 107,7894737 | 107,7894737 | 15,67347 | 0,15751 |
Остаток | 1 | 6,877192982 | 6,877192982 | ||
Итого | 2 | 114,6666667 |
С помощью программы РЕГРЕССИЯ построим модель по последним четырем наблюдениям (регрессия-2), для этой модели остаточная сумма квадратов
.Дисперсионный анализ | |||||
df | SS | MS | F | Значимость F | |
Регрессия | 1 | 4,166666667 | 4,166666667 | 0,186916 | 0,707647 |
Остаток | 2 | 44,58333333 | 22,29166667 | ||
Итого | 3 | 48,75 |
Рассчитаем статистику критерия:
.Критическое значение при уровне значимости
и числах степеней свободы составляет .Схема критерия:
Сравним
, следовательно, свойство постоянства дисперсии остатков выполняется, модель гомоскедастичная.2. Для проверки независимости уровней ряда остатков используем критерий Дарбина–Уотсона
.Предварительно по столбцу остатков с помощью функции СУММКВРАЗН определим
; используем найденную программой РЕГРЕССИЯ сумму квадратов остаточной компоненты .Таким образом,
Схема критерия:
Полученное значение d=2,375, что свидетельствует об отрицательной корреляции. Перейдем к d’=4-d=1,62 и сравним ее с двумя критическими уровнями d1=0,88 и d2=1,32.
D’=1,62 лежит в интервале от d2=1,32 до 2, следовательно, свойство независимости остаточной компоненты выполняются.
С помощью функции СУММПРОИЗВ найдем для остатков
, следовательно r(1)=2,4869Е-14/148,217=1,67788Е-16.Критическое значение для коэффициента автокорреляции определяется как отношение
Ön и составляет для данной задачиСравнения показывает, что çr(1)= 1,67788Е-16<0,62, следовательно, ряд остатков некоррелирован.
4) Соответствие ряда остатков нормальному закону распределения проверим с помощью
критерия: .С помощью функций МАКС и МИН для ряда остатков определим
, . Стандартная ошибка модели найдена программой РЕГРЕССИЯ и составляет . Тогда:Критический интервал определяется по таблице критических границ отношения
и при составляет (2,67; 3,57).