Смекни!
smekni.com

Методы решения уравнений линейной регрессии (стр. 3 из 3)

lg

= lga + blgx.

Обозначим через

Y=lg

, X=lgx, A=lga.

Тогда уравнение примет вид: Y = A + bX – линейное уравнение регрессии. Рассчитаем его параметры, используя данные таблицы 3.


b =

=

A =

= 1,57-0,64*1,53=0,59

Уравнение регрессии будет иметь вид: Y = 0,59+0,64* Х.

Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения.

= 100,59* х0,64.

Получим уравнение степенной модели регрессии:

= 3,87* х0,64.

8.3 Показательная модель

Уравнение показательной кривой:

=abx.

Для построения этой модели необходимо произвести линеаризацию переменных. Для этого осуществим логарифмирование обеих частей уравнения:

lg

= lga + xlgb.

Обозначим: Y = lg

, B = lgb, A = lga. Получим линейное уравнение регрессии: Y = A + Bx. Рассчитаем его параметры, используя данные таблицы 4.

В =

=

А =

= 1,57-0,01*35,6=1,27

Уравнение будет иметь вид: Y = 1,27+0,01х.

Перейдем к исходным переменным x и y, выполнив потенцирование данного уравнения:

=101,27* ( 100,01)х = 18,55*1,02х.

Графики построенных моделей:

Рис.3. Гиперболическая

Рис.4. Степенная

Рис.5. Показательная

9. Сравнение моделей по характеристикам: коэффициенты детерминации, коэффициенты эластичности и средние относительные ошибки аппроксимации. Вывод.

9.1 Гиперболическая модель

Коэффициент детерминации:


=

Вариация результата Y на 70,9% объясняется вариацией фактора Х.

Коэффициент эластичности:

=
= 0,05.

Это означает, что при увеличении фактора Х на 1 % результирующий показатель изменится на 0,05 %.

Бета-коэффициент:

Sx=

=0,01 Sy=
=8,5
60,25*0,01/8,5=0,07.

Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,07 среднеквадратического отклонения этого показателя.

Средняя относительная ошибка аппроксимации:

отн = 109,7/ 10= 10,97 %.

В среднем расчетные значения

для гиперболической модели отличаются от фактических значений на 10,97%.

9.2 Степенная модель

Коэффициент детерминации:


=

Вариация результата Y на 73,6% объясняется вариацией фактора Х. Коэффициент эластичности:

=
= 0,57.

Это означает, что при увеличении факторного признака на 1 % результирующий показатель увеличится на 0,57%.

Бета-коэффициент:

, Sy=
и Sx=
.

Sx=

=0,14 Sy=
=0,10
0,59*0,14/0,1=0,78.

Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 0,78 среднеквадратического отклонения этого показателя.

отн=
= 93,77/10 = 9,34%.

В среднем расчетные значения

для степенной модели отличаются от фактических значений на 9,34%.

9.3 Показательная модель

Коэффициент детерминации:


=

Вариация результата Y на 75,7% объясняется вариацией фактора Х. Коэффициент эластичности:

= 28,71.

Это означает, что при росте фактора Х на 1 % результирующий показатель Y изменится на 28,71 %.

Бета-коэффициент:

Sx=

=10,5 Sy=
=0,10
1,27*10,5/0,10=129,10.

Т.е. увеличение объема капиталовложений на величину среднеквадратического отклонения этого показателя приведет к увеличению среднего значения объема выпуска продукции на 129,1 среднеквадратического отклонения этого показателя.

отн= 91,9/ 10 = 9,19%.

В среднем расчетные значения

для показательной модели отличаются от фактических значений на 9,19%.

Вывод

Лучшей из уравнений нелинейной регрессии является показательная: выше коэффициент детерминации, наименьшая относительная ошибка. Модель можно использовать для прогнозирования.