Смекни!
smekni.com

Дискретная задача оптимального управления (стр. 2 из 6)

x(i + 1) = /(i,x(i),u(i,x)), i = 0,1,. .., N — 1, x(0) = xo

в направлении от 0 к N. В результате определяются при­ближённые оптимальные траектория и управление — пара (x(i),u(i)), на которой функционал I достигает приближен­ного абсолютного минимума в рассматриваемой области.

Разработана также модификация данного метода, основанная на аппроксимации заданного набора узловых значений правой части уравнения Беллмана по методу наименьших квадратов. В этой мо­дификации равенства (4) заменяются минимизацией относительно неизвестных коэффициентов интерполяционного полинома (3) сум­мы квадратов отклонений этого полинома от соответствующих уз­ловых значений. Преимущество такого подхода в том, что отпадаетнеобходимость строгого согласования конструкции полинома и кон­фигурации узловых точек, требуется лишь избыточность числа узлов относительно числа неизвестных, чтобы задача аппроксимации име­ла единственное решение.

4. Метод восстановления функции цены

Здесь рассматривается другой метод приближенного синтеза, осно­ванный на восстановлении так называемой функции цены. Под этим понимается зависимость функционала I(i, x), подсчитанного на неко­тором семействе решений системы (1), от значений i, x, рассматрива­емых как начальные для траекторий этого семейства. Если решения оптимальны, то, как известно, функция цены становится функцией Беллмана, иначе — функцией Кротова, удовлетворяющей соотноше­ниям (2), взятой с обратным знаком и порождающей оптимальный синтез управления. Если траектории семейства приближенно-опти­мальные, то и полученный с их помощью синтез также будет при­ближенно-оптимальным. На этом основана предлагаемая процедура приближенно-оптимального синтеза, называемая методом восстанов­ления функции цены, состоящая из следующих шагов:

• в рассматриваемой области фазового пространства при каж­дом i задается дискретный набор точек, от которых как от начальных строится семейство решений системы (1), прини­маемых за исходные приближения в каком-либо известном итерационном алгоритме улучшения (градиентном, второго порядка и т. п.);

• каждое решение улучшается до достижения оптимума, вы­числяются значения функции цены в узловых точках;

• задается приближенная функция Кротова-Беллмана посред­ством аппроксимации по найденному дискретному набору;

• вычисляется приближенно-оптимальный синтез с одновре­менной верхней оценкой;

• при удовлетворительном значении оценки процедура закан­чивается, иначе меняется схема аппроксимации и повторя­ются шаги 3) и 4) до окончания по оценке или до установ­ления;

• в последнем случае повторяются шаги 1)-5).

• Данный метод специфичен именно для дискретных систем, для которых конструкции Кротова, используемые на шагах 4) и 5), не требуют непрерывности и гладкости от функции р, и поэтому допус­кают произвольные аппроксимации, в том числе наиболее простые — кусочно-гладкие и даже кусочно-постоянные, что существенно упро­щает шаг 5).

• Возможна модификация данного метода, применимая и к непре­рывным системам, когда по дискретной схеме лишь задается функ­ция р и подсчитывается оценка.

• Другая модификация эффективна в широком классе задач, для которых среди оптимальных траекторий может быть выделена неко­торая опорная, «притягивающая» другие траектории выбранного се­мейства. Роль таких опорных траекторий могут играть магистрали в вырожденных задачах оптимального управления, исследуемых по методу кратных максимумов Гурмана, и программные оптимали в задачах локально оптимального синтеза в окрестности программной траектории с целью ее реализации управлением с обратной связью при малых возмущениях.

5. Некоторые приложения

• Приближённый синтез оптимального управления по дискретным схемам на основе глобальных методов и априорных оценок — это эф­фективный путь практического решения сложной проблемы опти­мального синтеза. Это подтверждают разнообразные приложения к версиям разработанных методов.

• Так, в работах [6-8] описываются приложения рассматриваемых методов к задачам улучшения и локально-оптимального синтеза уп­равлений, реализующих характерные маневры вертолета. Прибли­женный синтез в окрестности неоптимальной траектории с помощью полиномов первого - второго порядка приводит к улучшению управ­лений, а после серии итераций -- к локальному оптимуму и прибли­женному локально-оптимальному синтезу управления.

В работе [9] описывается приложение данного метода к актуаль­ной задаче оптимизации стратегии устойчивого развития на агреги­рованной эколого-экономической модели -- типичной задаче с маги­стральным решением. Специфика этой задачи позволяет построить методом восстановления функции цены глобальный приближенный синтез оптимального управления с хорошей априорной оценкой, поз­воляющей судить о высокой точности решения. Выясняется такжевозможность приложений к аналогичным задачам любой размерно­сти, что невозможно в рамках классической схемы Беллмана из-за «проклятия размерности».

Методы синтеза и определения состояния обьекта

При диагностировании объектов обычно рассматриваются и учитываются только два характерных состояния:

• объект функционирует;

• объект не функционирует.

Однако с учетом комплектующих объекта (блоков, агрегатов, деталей) фак­тическое число состояний может быть существенно больше, например:

• первый блок объекта функционирует;

• второй блок объекта не функционирует;

• третий блок объекта функционирует и т.д.

В этой связи задача определения числа состояний объекта по существу сво­дится к задаче определения числа таких блоков или агрегатов, отказ которых при­водит к отказу всего объекта в целом.

В общем случае, когда объект состоит из N комплектующих, возможное число состояний может быть определено по формуле

S = 2n.

Число состояний, когда объект не функционирует (объект отказал), равно

S0 = S - 1.

Например, пусть рассматриваемый объект состоит из двух последовательно соединенных комплектующих (агрегатов).

1 2

Рис. 10. Схема объекта из двух агрегатов

Тогда можно выделить четыре возможные состояния объекта:

• отказал первый агрегат;

• отказал второй агрегат;

• отказали первый и второй агрегаты;

• объект функционирует (не отказали ни первый, ни второй агрегаты).

Из общего числа состояний S число неработоспособных состояний SN может быть определено по формуле

SN = 2N - 1.

Очевидно, что при последовательном соединении элементов в рассматри­ваемом примере состояния 1,2,3 свидетельствуют о неработоспособности всей системы. Число состояний, соответствующих отказу всего объекта, 4 - 1= 3.

При контроле реальных технических систем, состоящих из большого числа элементов, даже при учете для каждого элемента только двух состояний общее количество возможных состояний оказывается чрезвычайно большим. Например, у объекта, состоящего из 200 деталей, общее число возможных состояний S = 2200, а число состояний неправильного функционирования SN = 2200-1

Для уменьшения числа учитываемых состояний объекта принимают следующие допущения:

• Вероятность одновременного возникновения в системе отказов двух и более элементов пренебрежимо мала по сравнению с вероятностью отказа только одного элемента. Фактически это означает, что число неработоспособных состоя­ний системы может быть определена по формуле

Sn = N,

где N - количество элементов в системе (в объекте контроля).

• Можно исключить из рассмотрения отказы тех элементов, вероятность отказа которых мала, или их отказы не имеют опасных последствий. В этой связи число возможных состояний, практически приводящих к отказу всего объекта, равна

Sn < N.

Перечисленные допущения позволяют существенно (на несколько поряд­ков) снизить размерность числа рассматриваемых состояний у контролируемых объектов.

Последовательность выбора контролируемых состояний и их признаков рассмотрим на примере упрощенной схемы системы, которая представлена на рис.11.

Cледует, что рассматриваемая система состоит из девяти эле­ментов. При этом общее количество ее возможных неработоспособных состояний Sn =29-1 = 511.

4.2. Определение контролируемых параметров

Если допустить, что одновременно может отказать только один блок, то число неработоспособных состояний составит SN=N=9. Отбросив маловероятные отказы (блоки 6, 7, 8, 9), получим, что наиболее вероятное количество неработо­способных состояний системы SN равно всего лишь 5. Такими состояниями яв­ляются:

• - отказ блока №1;

• - отказ блока №2;

• - отказ блока №3;

• - отказ блока №4;

• - отказ блока №5.

В качестве признаков перечисленных состояний будем использовать откло­нение от установленной нормы значений тех или иных параметров. В рассматри­ваемом примере такими признаками могут быть: 1 - повышение уровня шума, 2 - повышение давления, 3 - повышение температуры, 4 - величина напряжения, 5 - величина силы тока, 6 - величина сопротивления обмоток, 7 - величина сопро­тивления контакта, 8 - величина сопротивления изоляции.

В общем случае между состояниями Sj и их признаками Xj могут встречать­ся виды взаимосвязи, представленные на рис.12.

- между признаком X и состоянием Si имеется взаимосвязь

(иначе - признак Xi реагирует на состояние S)

- несколько признаков Xj...Х+„ реагируют на одно

состояние S;