Сначала Кеплера соблазнила мысль о том, что существует всего, пять правильных многогранников и всего шесть (как казалось тогда) планет Солнечной системы: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн. Показалось, что гармония мира и любовь природы к повторениям сделали правильные многогранники связующими звеньями между шестью небесными телами. Кеплер предположил, что сферы планет связаны между собой вписанными в них Платоновыми телами. Так как для каждого правильного многогранника центры вписанной и описанной сфер совпадают, то вся модель будет иметь единый центр, в котором располагается Солнце.
Кеплер выполнил огромную вычислительную работу, чтобы подтвердить свои предположения. В 1596 году он выпустил книгу, в которой они были изложены. Согласно этим предположениям, в сферу орбиты Сатурна можно вписать куб, в который вписывается сфера орбиты Юпитера. В нее, в свою очередь, вписывается тетраэдр, описанный около сферы орбиты Марса. В сферу орбиты Марса вписывается додекаэдр, в который вписывается сфера орбиты Земли. А она описана около икосаэдра, в который вписана сфера орбиты Венеры. Сфера этой планеты описана около октаэдра, в который вписывается сфера Меркурия. Такая модель Солнечной системы получила название «Космического кубка» Кеплера.
6. Задача о проверке космической теории Платоновых тел.
Можно проверить самим космическую теорию Платоновых тел. Рассмотрим задачу:
«Средние радиусы орбиты Сатурна и Юпитера равны соответственно Rс= 1, 427·109 км и Rю = 0,788 · 109 км. Найдите отношение радиусов орбит указанных планет и сравните найденное отношение с отношением радиусов описанной около куба и вписанной в него сфер».
Решение.
Согласно гипотезе Кеплера эти отношения должны быть равны. Итак, из наблюдений имеем:
.Согласно гипотезе в сферу орбиты Сатурна вписан куб, пусть его ребро равно а. Тогда радиус вписанной окружности равен половине диагонали вписанного куба, т.е.
но и тогда . В этот куб вписана сфера (орбита Юпитера). Обозначим ее радиус через r. Он равен половине ребра куба, т.е. . Тогда .Как видим, расхождение между теоретическим отношением R : r и наблюдаемым Rс : Rю не так уж и велико, менее 0,1. А для космических масштабов оно вроде бы и допустимо. Эти «почти совпадения» и заставляли Кеплера долго держаться за теорию платоновых тел, поскольку легко было заподозрить ошибку в наблюдениях.
Год за годом он уточнял свои наблюдения, перепроверял данные коллег, но, наконец, нашел в себе силы отказаться от заманчивой гипотезы. Однако ее следы просматриваются в третьем законе Кеплера, где говорится о кубах средних расстояний от Солнца.
Каким образом они могли появиться в сознании человека, если бы он не рассуждал об объеме пространственных тел? Ведь именно объем, как мы знаем, выражается кубами линейных размеров тел. Но это тоже гипотеза, гипотеза о том, как были найдены законы Кеплера. У нас нет возможности ее проверить, но мы твердо знаем одно: без гипотез, иногда самых неожиданных, казалось бы, бредовых, не может существовать наука.
Полуправильные многогранники
Известно еще множество совершенных тел, получивших название полуправильных многогранников или Архимедовых тел. У них также все многогранные углы равны и все грани – правильные многоугольники, но несколько разных типов. Существует 13 полуправильных многогранников, открытие которых приписывается Архимеду.
Архимед (287 г. до н.э. – 212 г. до н.э)
Множество Архимедовых тел можно разбить на несколько групп. Первую из них составляют пять многогранников, которые получаются из Платоновых тел в результате их усечения. Усеченное тело – это тело с отрезанной верхушкой. Для Платоновых тел усечение может быть сделано таким образом, что и получающиеся новые грани и остающиеся части старых будут правильными многоугольниками. Таким путем могут быть получены пять Архимедовых тел: усеченный тетраэдр, усеченный гексаэдр (куб), усеченный октаэдр, усеченный додекаэдр и усеченный икосаэдр (Рис. 2).
(а) | (б) | (в) |
(г) | (д) |
Рисунок 2. Архимедовы тела: (а) усеченный тетраэдр, (б) усеченный куб, (в) усеченный октаэдр, (г) усеченный додекаэдр, (д) усеченный икосаэдр
В своей Нобелевской лекции американский ученый Смолли, один из авторов экспериментального открытия фуллеренов, говорит об Архимеде (287-212 гг. до н.э.) как о первом исследователе усеченных многогранников, в частности, усеченного икосаэдра, правда, оговариваясь, что возможно Архимед присваивает себе эту заслугу и, возможно, икосаэдры усекали задолго до него. Достаточно упомянуть найденные в Шотландии и датированные около 2000 г. до н.э. сотни каменных предметов (по всей видимости, ритуального назначения) в форме сфер и различных многогранников (тел, ограниченных со всех сторон плоскими гранями), включая икосаэдры и додекаэдры. Оригинальная работа Архимеда, к сожалению, не сохранилась, и ее результаты дошли до нас, что называется, «из вторых рук». Во времена Возрождения все Архимедовы тела одно за другим были «открыты» заново. В конце концов, Кеплер в 1619 г. в своей книге «Мировая гармония» («Harmonice Mundi») дал исчерпывающее описание всего набора архимедовых тел — многогранников, каждая грань которых представляет собой правильный многоугольник, а все вершины находятся в эквивалентном положении (как атомы углерода в молекуле С60). Архимедовы тела состоят не менее, чем из двух различных типов многоугольников, в отличие от 5 Платоновых тел, все грани которых одинаковы (как в молекуле С20, например).
Рисунок 3. Конструирование Архимедового усеченного икосаэдра
из Платонового икосаэдра
Итак, как же сконструировать Архимедов усеченный икосаэдр из Платонова икосаэдра? Ответ иллюстрируется с помощью рис. 3. Действительно, как видно из Табл. 1, в любой из 12 вершин икосаэдра сходятся 5 граней. Если у каждой вершины отрезать (отсечь) 12 частей икосаэдра плоскостью, то образуется 12 новых пятиугольных граней. Вместе с уже имеющимися 20 гранями, превратившимися после такого отсечения из треугольных в шестиугольные, они составят 32 грани усеченного икосаэдра. При этом ребер будет 90, а вершин 60.
Додекаэдр и двойственный ему икосаэдр занимают особое место среди Платоновых тел. Прежде всего, необходимо подчеркнуть, что геометрия додекаэдра и икосаэдра непосредственно связана с золотой пропорцией
. Действительно, гранями додекаэдра (Рис.1-д) являются пентагоны, т.е. правильные пятиугольники, основанные на золотой пропорции. Если внимательно посмотреть на икосаэдр (Рис.1-г), то можно увидеть, что в каждой его вершине сходится пять треугольников, внешние стороны которых образуют пентагон. Уже этих фактов достаточно, чтобы убедиться в том, что золотая пропорция играет существенную роль в конструкции этих двух Платоновых тел.Но существуют более глубокие математические подтверждения фундаментальной роли, которую играет золотая пропорция в икосаэдре и додекаэдре. Известно, что эти тела имеют три специфические сферы. Первая (внутренняя) сфера вписана в тело и касается его граней. Обозначим радиус этой внутренней сферы через Ri. Вторая или средняя сфера касается ее ребер. Обозначим радиус этой сферы через Rm. Наконец, третья (внешняя) сфера описана вокруг тела и проходит через его вершины. Обозначим ее радиус через Rc. В геометрии доказано, что значения радиусов указанных сфер для додекаэдра и икосаэдра, имеющего ребро единичной длины, выражается через золотую пропорцию t (Табл. 3).
Rc | Rm | Ri | |
Икосаэдр | |||
Додекаэдр |
Таблица 3. Золотая пропорция в сферах додекаэдра и икосаэдра