Имеем
.
Откуда
Приравнивая коэффициенты при одинаковых степенях в обеих частях , получим:
Таким образом,
=-
Варианты
Вычислить интегралы:
В-1
Вопрос к лабораторной работе №4
1. В чем заключается метод Остроградского и когда им пользуются?
ЛАБОРАТОРНАЯ РАБОТА №5
Интегрирование тригонометрических функций
Дифференциалы вида
, (I)
где - рациональная функция от двух переменных, могут быть приведены к более простому виду с помощью подстановки
.(*)
При этом используется формулы из тригонометрии:
; ;
Тогда:
; ; (**)
Подстановка (*) называется универсальной тригонометрической подстановкой.
Пример1. Вычислить интеграл
Решение: Сделаем подстановку , пользуясь (**), получим
=
В некоторых случаях можно использовать более простые подстановки. Рассмотрим эти случаи.
Замечание 1: Если целая или дробная рациональная функция не меняет своего значения при изменении знака у одного из аргументов, например, т. е. , то она может быть приведена к виду , содержащему лишь четные степени .
Если же, наоборот, при изменении знака функция так же меняет знак, т.е. , то она проводится к виду .
Рассмотрим три случая:
1. Пусть теперь меняет знак при изменении знака , тогда
и рационализация достигается подстановкой .
2. Аналогично, если меняет знак при изменении знака , то
,
так что здесь целесообразна подстановка .
3. Предположим, наконец, что функция не меняет своего значения при одновременном изменении знаков и : . В этом случае, заменяя на будем иметь: . По свойству функции R , если изменить знаки и (отношение при этом изменяется):
а тогда, как мы знаем .
Поэтому
=
Поэтому здесь используется подстановка .
Замечание 2. Каково бы ни было рациональное выражение , его можно представить в виде суммы трех выражений рассмотренных типов:
Первое из этих выражений меняет знак при изменении знака , второе меняет знак при изменении , а третье сохраняет значение при одновременном изменении знаков и . Разбив на соответствующие слагаемые, можно к первому из них применить подстановку , ко второму - подстановку и, наконец, к третьему - подстановку . Таким образом, для вычисления достаточно этих трех подстановок.
Пример 2. Вычислить интеграл:
Решение: =
Если в выражение подставим в место , то дробь изменит знак на противоположный, поэтому здесь выгодна подстановка .
Пример 3. Вычислить интеграл
Решение: в этом случае можно сделать замену .
=
Интегралы от квадратов и других четных степеней и находят, применяя формулы понижение степени:
.
Задача. Интегрируя по частям, вывести формулы понижения степени:
Варианты
Вычислить интегралы:
В-1
Вопросы к лабораторной работе №5
1) Назовите универсальную подстановку, с помощью которой всегда достигается рационализация дифференциала вида (1) , и покажите, как ею пользоваться.
2) В каких условиях рационализация дифференциала (1) достигается подстановкой ? Приведите доказательство.
3) В каких случаях рационализация дифференциала (1) достигается подстановкой ? Приведите доказательство.
4) В каких случаях рационализация дифференциала (1) достигается подстановкой
?
5) Что такое «интегральный логарифм», «интегральный синус» и «интегральный косинус»?
6) Выведите рекуррентные формулы для вычисления интегралов вида .
ЛАБОРАТОРНАЯ РАБОТА №6
Интегрирование некоторых выражений, содержащих радикалы
Интегрирование выражений вида
Рассмотрим интеграл вида
, (1)
где означает рациональную функцию от двух аргументов, - натуральное число, постоянные, причем . Полагаем
;.
Интеграл (I) примет вид: здесь дифференциал имеет уже рациональный вид, так как - рациональные функции.
Вычислив этот интеграл как интеграл от рациональной функции, вернемся к старой переменной, подставив .
К интегралу вида (I) сводятся и более общие интегралы
где все показатели – рациональны; стоит лишь привести эти показатели к общему знаменателю , чтобы под знаком интеграла получить рациональную функцию от и от радикала .
Пример 1.
Здесь дробно-линейная функция сводится к линейной функции:
Разложим данную дробь на простейшие
Приведем к общему знаменателю правую часть равенства и приравняем числители, получим:
Приравняв коэффициенты при одинаковых степенях в правой и левой частях, получим систему уравнений: . Решив систему, получим .
Интегрирование биноминальных дифференциалов
Биноминальными называются дифференциалы вида
, (2)
где –любые постоянные, а показатели - рациональные числа.
Если - число целое, то мы получим выражение, изученное в I. Именно, если через обозначить наименьшее общее кратное знаменателей , то будем иметь выражение вида для рационализации которого достаточна подстановка .
Пусть - целое. Преобразуем теперь данное выражение подстановкой . Тогда и положив для краткости будем иметь
(3)
Если – целое число, то снова приходим к выражению изученного типа (2). Если обозначить через знаменатель дроби , то выражение будет иметь вид Рационализации подынтегрального выражения можно достигнуть сразу подстановкой:
Пусть- целое.
Перепишем второй из интегралов (3) так: При – целом снова имеем случай (2). Преобразованное выражение имеет вид: Подынтегральное выражение рационализируется сразу подстановкой .
Оба интеграла (3) выражаются в конечном виде, если оказывается целым одно из чисел: ; или одно из чисел ,
Пример 3. , где .
т. к. , то имеем 2-й случай интегрируемости.
Заметив, что , положим
Пример 4., где - третий случай интегрируемости, т. к. Заметив, что положим
III. Интегрирование выражений вида . Подстановки Эйлера.
Рассмотрим интеграл
(*)
где квадратный трехчлен не имеет равных корней.
Пусть >0. Тогда полагают . Возводя это равенство в квадрат, найдем отсюда:
Если полученные выражения подставить в (*) , то вопрос сведется к интегрированию рациональных функции от . В результате, возвращаясь к , нужно будет положить .
Пусть >0. В этом случае можно положить . Положим
Пусть имеем различные вещественные корни l и m .Тогда этот трехчлен разлагается на линейные множители Положим
Если подставить сюда , то получим
Применим 2-ую подстановку
; ;
=
Подставив получим
Варианты
Вычислить интегралы:
ЛАБОРАТОРНАЯ РАБОТА №7
Определенный интеграл. Свойства определенного интеграла. Вычисление определенных интегралов
Опр. 1. Разбиением отрезка называется множество точек , таких что , внутри каждой части возьмем произвольную точку , набор точек называется разбиением с отмеченными точками
Обозначим
Опр. 2. Если функция определена на отрезке , а - разбиение с отмеченными точками этого отрезка, то сумма
Называется интегральной суммой функции , соответствующей разбиению с отмеченными точками отрезка .
Опр. 3. Число называется пределом интегральной суммы при , если для любого найдется число такое, что для любого разбиения с отмеченными точками отрезка , параметр которого имеет место соотношение
для любого набора
То этот предел называют определенным интегралом от функции по сегменту и обозначают
Опр. 4. Функция называется интегрируемой по Риману на отрезке, если существует предел вида II, причем функция называется подынтегральной функцией, число - нижний предел интегрирования, число - верхний предел интегрирования. Множество интегрируемых на функций будем обозначать
Пример 1. Вычислить исходя из определения интеграла .
Решение: по определению при ,.
Разобьем отрезок [0,1] на n равных частей точками деления Длина каждого частичного отрезка причем
В качестве точек возьмем правые концы частичных отрезков
Составим интегральную сумму
Предел этой интегральной суммы при равен
Следовательно,
Свойства определенного интеграла:
I. Теорема I: Если и – интегрируемые на отрезке функции, то их линейная комбинация интегрируема на данном отрезке, причем
, интегрируема на
Если < < и то , и имеет место равенство < <
Сформулируйте остальные свойства определенного интеграла.
Теорема Ньютона-Лейбница.
Если -ограниченная, с конечным множеством точек разрыва функция, то где -любая из первообразных функций на отрезке [a,b].
Пример 2. Вычислить интеграл
Решение: функция определена на R.
Замечание: Вычисляя интегралы с помощью формулы Ньютона-Лейбница, следует обратить внимание на условия законности ее применения.
Эта формула применяется для вычисления определенного интеграла от непрерывной на отрезке функции лишь тогда, когда равенство выполняется на всем отрезке .
Например, при вычислении интеграла нельзя брать в качестве первообразной функции , так как при нарушается равенство ( при это равенство имеет место). При функция разрывна и не может быть первообразной.
Пример 3. Можно ли применить формулу Ньютона-Лейбница к интегралу ?
Решение: Нет, нельзя! Если формально вычислять этот интеграл по формуле Ньютона-Лейбница, то получим неверный результат. Действительно, . Но подынтегральная функция и, следовательно, интеграл не может равняться отрицательному числу. Суть дела заключается в том, что подынтегральная функция имеет бесконечный разрыв в точке , принадлежащей промежутку интегрирования. Следовательно, применение здесь формулы Ньютона-Лейбница незаконно.
Варианты
Вычислить интегралы: 1) – с помощью предельного перехода от интегральных сумм;
2)-7) по формуле Ньютона – Лейбница.
Вопросы к лабораторной работе №7
Что называется определенным интегралом от функции на отрезке ?
Зависит ли величина определенного интеграла от способа разбиения ? А от выбора промежуточного значения точек ?
Каков геометрический смысл интегральной суммы определенного интеграла?
Укажите необходимое условие интегрируемости функции.
Как составляются суммы Дарбу? Какими свойствами они обладают?