БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра Информационных технологий автоматизированных систем
РЕФЕРАТ
На тему:
«Системы с одним и двумя воздействиями»
МИНСК, 2008
1 Основные свойства преобразования Лапласа
Передаточные функции являются центральным понятием классической теории автоматического управления. Они основаны на использовании преобразования Лапласа всех процессов как функций времени. Поэтому напомним его основные свойства. Все они вытекают из самого определения преобразования Лапласа и легко доказываются.
Прямое и обратное преобразования Лапласа
функции определяются выражениями , .Преобразование Лапласа является функцией комплексного переменного
. Отсюда и следует, что преобразование Фурье является частным случаем преобразования Лапласа при , т.е. при чисто мнимом значении переменной s.Итак, напомним основные свойства (теоремы) преобразования Лапласа, точнее, только те их них, которые будут использоваться нами в дальнейшем. При этом для краткости прямое и обратное преобразование Лапласа будем обозначать как оператор одной буквой
,или даже заменять строчную букву прописной с одновременной заменой переменной tна переменную sв тех случаях, когда это не требует пояснений.
1. Теорема линейности. Для любых коэффициентов a и b
или, что то же самое,
.2. Теорема запаздывания. Для любого постоянного t > 0
( ).3. Теорема дифференцирования оригинала.
Применив эту теорему к производным высших порядков, получим:
При нулевых начальных условиях это выражение упрощается:
4. Теоремы о начальном и конечном значениях оригинала.
, .5. Теорема о свертке в вещественной области.
.Последнее выражение означает, что произведению изображений соответствует свертка оригиналов.
2 Определение передаточной функции системы
Приступим теперь к определению передаточной функции. Пусть система или какое-либо звено ее описываются дифференциальным уравнением nпорядка
. (1)При определении вынужденных колебаний начальные условия, как входного воздействия, так и выходной координаты, как правило, полагаются нулевыми. При нулевых начальных условиях применим преобразование Лапласа к обеим частям данного уравнения
Учитывая теоремы о линейности и дифференцировании, получим
.Отсюда
. (2)Передаточной функцией системы W(s) называется отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины при нулевых начальных условиях.
Таким образом,
. (3)Сказанное справедливо вне зависимости от того, каким образом определено это отношение. Даже если оно определено не по дифференциальному уравнению, то все равно считается, что передаточная функция имеет вид отношения двух полиномов от s:
(4)и параметры этих полиномов равны соответствующим параметрам дифференциального уравнения.
Если же передаточная функция определена другим образом, то ее можно попытаться представить отношением двух полиномов. При этом следует иметь в виду, что это все же отношение изображений двух процессов, один из которых описывает входной процесс в каком-либо частном случае, а другой – соответствующий ему выходной процесс при нулевых начальных условиях.
Итак, вне зависимости от того, каким образом определена передаточная функция, она позволяет по изображению входного процесса определить изображение выходного процесса
,как это следует из выражения (3).
Такое использование передаточной функции является основным, но не единственным его применением. В частности, простая замена
позволяет получить из передаточной функции частотную характеристику, которая имеет ясный содержательный смысл.Используя это обстоятельство, можно пояснить некоторые свойства передаточных функций. Например, при полиномиальном представлении числителя и знаменателя передаточной функции всегда оговаривается, что порядок полинома в числителе mне может превышать порядок полинома в знаменателе n. Это требование, известное под названием условия физической осуществимости, легко доказывается или, по крайней мере, поясняется на примере соответствующей частотной характеристики.
Действительно, положив
, получим частотную характеристику некоторой системы. Ее можно рассматривать как комплексный коэффициент усиления гармонических процессов в зависимости от частоты. Порядок числителя не может превышать порядок знаменателя, потому что в противном случае придется допустить, что величина коэффициента усиления системы стремится к бесконечности с ростом частоты входного сигнала, чего в реальных системах быть не может.Вообще говоря, физически не осуществимо и устройство, сохраняющее постоянное значение коэффициента усиления в бесконечно большом диапазоне высоких и сверхвысоких частот. Математической моделью такого устройства и является частотная характеристика, у которой порядки числителя и знаменателя совпадают. Однако, это очень удобная математическая модель идеального преобразователя, изменением частотной характеристики которого можно пренебречь во всем диапазоне частот, представляющем хоть какой-то интерес. Например, идеальное тождественное преобразование имеет передаточную функцию, равную единице. Все частоты проходят через это устройство не искажаясь, с единичным коэффициентом усиления. Этого, конечно, тоже быть не может, но такую идеальную картину можно допустить. Поэтому случай равенства порядков числителя и знаменателя передаточной функции не относят к физически не реализуемым.
Для определения выходного процесса по входному следует, в соответствии с только что приведенным выражением, сначала получить изображение (преобразование Лапласа) входного процесса, умножить его на передаточную функцию системы и определить оригинал (обратное преобразование Лапласа) полученного выражения. В общем случае это довольно трудоемкая работа, но в некоторых частных случаях это не трудно сделать. Для иллюстрации основных понятий и положений теории автоматического управления требуется определять реакцию (отклик) системы на небольшое число типовых воздействий, преобразования Лапласа которых, во-первых, не трудно вычислить, а во-вторых, они давно уже вычислены и приведены в соответствующих таблицах во всех руководствах по теории автоматического управления.
Определение выходного процесса по входному несколько отличается по постановке задачи от задачи нахождения частного решения дифференциального уравнения при заданной правой части или внешнем воздействии. Основное отличие заключается в ограничении нулевыми начальными условиями при определении и использовании самого понятия передаточной функции.
Однако не трудно повторить все рассуждения, связанные с использованием преобразования Лапласа, для нахождении решения дифференциального уравнения при ненулевых начальных условиях. Приведенная выше теорема о дифференцировании предоставляет для этого все условия.
Применим преобразование Лапласа к правой и левой частям уравнения (1), используя теорему о дифференцировании при ненулевых начальных условиях. В результате получим уравнение
,где полиномы
те же самые, что и в выражении (4), т.е. полностью совпадают с полиномами, полученными при нулевых начальных условиях, поскольку не содержат значений начальных условий. В свою очередь, коэффициенты полиномов и зависят только от начальных условий выходного и входного процессов соответственно.