Смекни!
smekni.com

Структуризация задач принятия решений в условиях определенности Некорректно поставленные задачи (стр. 6 из 6)

Этот метод оптимален по порядку точности при всяких

и при каждом p > 0. Он обеспечивает неулучшаемый порядок точности на всем классе
, каково бы ни было p > 0, причем гарантированная верхняя оценка точности есть
.

Теорема 9 обосновывает адаптивность алгоритма специализированного метода регуляризации.

Специализированный метод квазирешений.Он базируется на решении экстремальной задачи: при фиксированном числе β > 0 найти элемент

, для которого

(6.1)

В задаче (6.1) минимизируется непрерывный выпуклый (квадратичный) функционал на замкнутом, выпуклом, ограниченном множестве гильбертова пространства. Известно, что такая задача разрешима. Будем использовать далее произвольное ее решение

при каждом рассматриваемом β > 0. Алгоритм специализированного метода квазирешений состоит из следующих шагов: 1) найти число

(6.2)

здесь числовое множество

определяется так:

(6.3)

2) решить при

=
задачу (6.1) и по ее решению
найти приближение

.

Множество

из задачи (6.2) не пусто по крайней мере для «малых δ»: 0 < δ <
Действительно при 0 < δ <
и при
справедливо включение
. Из него и из задачи (6.1) с учетомоценки ||
||
для таких δ и βполучим:

и это значит, что

.

Конечность величины

устанавливается, причем для этого
верна та же оценка, что и в замечании 2. Из (6.1)-(6.3) следуют неравенства

Используя их можно получить сходимости

при
. Из сказанного ясно, что для приближенных решений задачи (1), которые находятся по специализированному методу квазирешений, верны результаты теоремы 9. Поэтому данный алгоритм является адаптивным. (Ист.№8)

Вывод

Решение – это выбор альтернативы. Принятие решений – связующий процесс, необходимый для выполнения любой управленческой функции. Лицо,принимающее решение своими решениями может повлиять на судьбы многих людей и организаций. В зависимости от уровня сложности задач, среда принятия решений варьируется в зависимости от степени риска. Условия определенности существуют, когда руководитель точно знает результат, который будет иметь каждый выбор. Методы приближённого решения некорректно поставленных задач и их применений к решению обратных задач имеют важное значение для автоматизации обработки наблюдений и для решения проблем управления. Имеется много работ (особенно советских математиков), посвященные этим методам.

Существовало мнение, что некорректные задачи не могут встречаться при решении физических и технических задач и что для некорректных задач невозможно построение приближённого решения в случае отсутствия устойчивости. Расширение средств автоматизации при получении экспериментальных данных привело к большому увеличению объёма таких данных; необходимость установления по ним информации о естественнонаучных объектах потребовала рассмотрения некорректных задач. Развитие электронной вычислительной техники и применение её к решению математических задач изменило точку зрения на возможность построения приближённых решений некорректно поставленных задач.

Из определения регуляризирующего алгоритма легко следует, что, если есть хотя бы один регуляризирующий алгоритм, то их может быть сколько угодно. Выбрать же тот, который дает наименьшую ошибку, или сравнивать алгоритмы, сравнивая ошибки полученных приближенных решений, при решении некорректных задач, невозможно при отсутствии априорной информации, которая фактически преобразует такие задачи в корректные.

К числу адаптивных регуляризирующих алгоритмов относятся специализированный метод регуляризации А.Н. Тихонова, специализированный метод квазирешений, получаемый из обычного метода квазирешений по определенной схеме. Все эти адаптивные алгоритмы были программно реализованы в системе MATLAB и показали свою высокую эффективность в численных эксперементах.


Список использованных источников

1. Бакушинский А. Б., Гончарский А.В. Некорректные задачи. Численные методы и приложения. – М.: Изд-во Моск. ун-та, 1989. – 199 с.

2. Большая советская энциклопедия. - Статья 34622. Корректные и некорректные задачи С.1154 [Электронный ресурс] http://www.diclib.com/cgibin/d1.cgi?l=ru&base=bse&page=showid&id=34622

3. Гимади Э.Х. О некоторых математических моделях и методах планирования крупномасштабных проектов / Э.Х. Гимади //Модели и методы оптимизации. Труды Института математики. - Новосибирск.: Наука. Сиб. Отд–ние. - 1988. - С. 89–115

4. Горский П. Введение в прикладную дисциплину «поддержка принятия решений» С. 1-5 [Электронный ресурс]http://www.devbusiness.ru/development/dms/dms_intro.htm

5. Грищенко О.В.Управленческий учет / О.В.Грищенко // Понятие об управленческих решениях и их классификация //Конспект лекций. - Таганрог.: ТТИ ЮФУ, 2007. – 69 с. [Электронный ресурс] http://www.aup.ru/books/m166/6_1.htm

6. Казиев В.М. Введение в анализ, синтез и моделирование систем. / В.М. Казиев // Лекция 13: Основы принятия решений и ситуационного моделирования. – М.: Интернет универ. – 2006. - С.49-53 [Электронный ресурс] http://www.intuit.ru/department/expert/intsys/13/4.html

7. Леонов А.С., Ягола А.Г. Адаптивные регулизирующие алгоритмы для решения некоректных задач / М.: Вестник Московского университета. - 1998. - No. 2 (март-апрель). - С. 62-63 [Электронный ресурс]

http://www.phys.msu.ru/upload/iblock/a84/98-2-62.pdf

8. Леонов А.С., Ягола А.Г. Оптимальные методы решения некорректных задач с истокообразно представимыми решениями / М.: Фундамент. и прикл. матем. - 1998том4, выпуск3. – С. 1029–1046 [Электронный ресурс] http://www.mathnet.ru/links/def37868bce5b5f5d14bfa300b7b6912/fpm_340_card_rus.pdf

9. Планкетт Л., Выработка и принятие управленческих решений, М.: Наука, 1984 г. – 146с.

10. Тихонов А.Н. О решении некорректно поставленных задач и методе регуляризации//Доклады АН СССР. – 1963. – 151. – №3. – С.501-504.