Интересные примеры
в метрических пространствах:
1. В n-мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб. Действительно, если такой куб разбить на кубики с ребром e, то вершины этих кубиков будут образовывать конечную
-сеть в исходном кубе, а значит, и подавно, в любом множестве, лежащем внутри этого куба.1. Единичная сфера S в пространстве l2 дает нам пример ограниченного, но не вполне ограниченного множества. Рассмотрим в S точки вида:
е1=(1, 0, 0, ..., 0, 0, ...),
е2=(0, 1, 0, ..., 0, 0, ...),
…………………………,
еn=(0, 0, 0, ..., 1, 0, ...),
………………………….
2. Рассмотрим в l2множество П точек
x=(x1, x2, ¼, xn, ...),
удовлетворяющих условиям:
| x1|£1, | x2|£1/2, ¼,| xn|£1/2n-1, ...
Это множество называется фундаментальным параллепипедом («гильбертовым кирпичем») пространства l2. Оно представляет собой пример бесконечномерного вполне ограниченного множества. Для доказательства его полной ограниченности поступим следующим образом.
из П сопоставим точку x*=(x1, x2, ¼, xn, 0, 0, ...)
из того же множества. При этом
r(x,x*)=
£ <1/2n-1<e/2.Множество П* точек вида x*=(x1, x2, ¼, xn, 0, 0, ...) из П вполне ограничено (как ограниченное множество в n-мерном пространстве). Выберем в П* конечную e/2-сеть. Она будет в то же время e-сетью во всем П. Докажем это.
Доказательство: для "e>0, выберем n так, что 1/2n-1<e/2.
"xÎП: x=(x1, x2, ¼, xn, ...) сопоставим
x*=(x1, x2, ¼, xn, 0, 0, ...) и x*ÎП. При этом r(x,x*)<e/2. Из пространства П выберем x**: r(x*,x**)<e/2.
Тогда: r(x,x**)£r(x,x*)+r(x*,x**)<e/2+e/2=e.
Множество П* содержит точки вида x*=(x1, x2, ¼, xn, 0, 0, ...), в этом множестве выберем конечную e/2-сеть. Она будет e-сетью в пространстве П, так какr(x,x**)<e.