Федеральное агентство по образованию
Государственное образовательное учреждение высшего профессионального образования
Вятский государственный гуманитарный университет
Математический факультет
Кафедра алгебры и геометрии
Выпускная квалификационная работа
Топологическая определяемость верхних полурешёток.
Выполнил:
студент V курса математического факультета
Малых Константин Леонидович
Научный руководитель:
кандидат физико-математических наук, доцент кафедры алгебры и геометрии В.В. Чермных
Рецензент:
доктор физико-математических наук, профессор, заведующий кафедрой алгебры и геометрии Е.М. Вечтомов
Допущена к защите в государственной аттестационной комиссии
«___» __________2005 г. Зав. Кафедрой Е.М. Вечтомов
«___»___________2005 г. Декан факультета В.И. Варанкина
Киров 2005
Оглавление.
Введение …………………………………………………………………стр. 3
Глава 1 ……………………………………………………………………стр. 4
1. Упорядоченные множества ………………………………………стр. 4
2. Решётки.……………………………………………………………стр. 5
3. Дистрибутивные решётки ………………………………………..стр. 8
4. Топологические пространства……………………………………стр.10
Глава 2…………………………………………………………………….стр.11
1. Верхние полурешётки…………………………………………….стр.11
2. Стоуново пространство …………………………………………..стр.15
Список литературы……………………………………………………….стр.21
Введение.
Дистрибутивная решётка является одним из основных алгебраических объектов. В данной работе рассматривается частично упорядоченное множество P(L) простых идеалов. Оно даёт нам много информации о дистрибутивной решётке L, но оно не может её полностью охарактеризовать. Поэтому, для того, чтобы множество P(L) характеризовало решётку L, необходимо наделить его более сложной структурой. Стоун [1937] задал на множестве P(L) топологию.
В этой работе рассматривается этот метод в несколько более общем виде.
Работа состоит из двух глав. В первой главе вводятся начальные понятия, необходимые для изучения данной темы. Во второй главе рассматриваются верхние полурешётки, а также множество простых идеалов с введенной на нём топологией.
Глава 1.
1. Упорядоченные множества.
Определение: Упорядоченным множеством
1.Рефлексивность:
2.Антисимметричность: если
3.Транзитивность: если
Если
Примеры упорядоченных множеств:
1. Множество целых положительных чисел, а
2. Множество всех действительных функций
Определение: Цепью называется упорядоченное множество, на котором для
Используя отношение порядка, можно получить графическое представление любого конечного упорядоченного множества
Примеры диаграмм упорядоченных множеств:
2. Решётки
Определение: Верхней гранью подмножества
Определение: Точная верхняя грань подмножества
Согласно аксиоме антисимметричности упорядоченного множества, если точная верхняя грань существует, то она единственна.
Понятия нижней грани и точной нижней грани (которая обозначается
Определение: Решёткой
Примеры решёток:
1. Любая цепь является решёткой, т.к.
2.
Наибольший элемент, то есть элемент, больший или равный каждого элемента упорядоченного множества, обозначают