Смекни!
smekni.com

Бимедианы четырехугольника (стр. 3 из 3)

Задача 11.

Отрезки, соединяющие середины противоположных сторон выпуклого четырехугольника ABCD,перпендикулярны (Рис.15) . Известно, что

.

Найдите площадь четырехугольника ABCD и сравните её с числом

.

Решение.

Так как бимедианы перпендикулярны, то параллелограмм Вариньона является ромбом (см.следствие1,1,б).

Так как KNявляется средней линией треугольника ADC, то по теореме о средней линии треугольника KN=0,5AC=2;

;

;

;

Площадь ABCDменьше, чем 2

.

Задача 12.

Отрезки, соединяющие середины противоположных сторон выпуклого четырехугольника ABCD,перпендикулярны (Рис.15) . Известно, что

.

Найдите квадрат длины отрезка PRи сравните его с числом 4

.

Решение.

Пусть KLMN – параллелограмм Вариньона четырехугольника ABCD.

Так как бимедианы перпендикулярны, то параллелограмм Вариньона является ромбом (см. следствие1,1,б).

;

;

.

Литература.

1. Погорелов А. В. Геометрия: Учеб. для 7 – 11 кл. сред. шк.- М.: Просвещение,1990.- 384 с.

2. Штейнгауз Г.Математический калейдоскоп. – М.:наука,1981.

3. Прасолов В.В. задачи по планиметрии. – Т.1, 2. – М.: Наука,1995.

4. Коксетер Г. С. М., Грейтцер С.Л. Новые встречи с геометрией. – М.: Наука,1978.

5. В. Вавилов, П. Красников. Бимедианы четырехугольника//Математика. 2006 - №22.