Дисциплина: «Высшая математика»
Тема: «Несобственные интегралы»
1. Несобственные интегралы с бесконечными пределами
При введении понятия определенного интеграла, а также при рассмотрении задач, связанных с ним, все время делалось предположение, что область интегрирования конечна, а интегрируемая функция на нем непрерывна. Если интервал интегрирования бесконечен или функция в этом интервале имеет точки разрыва, то введенное выше понятие определенного интеграла неприменимо. Однако существует целый ряд задач, когда возникает необходимость распространить понятие определенного интеграла на случаи бесконечных интервалов интегрирования и разрывных функций.
Рассмотрим вначале случай интегралов с бесконечными пределами. Пусть функция
непрерывна на промежутке . Следовательно, можно вычислить любой определенный интеграл с верхним пределом . Величина этого интеграла будет меняться в процессе изменения , но его можно будет вычислить до тех пор, пока конечное число. Как только верхний предел станет равным бесконечности, -ая интегральная сумма, приводящая в пределе к определенному интегралу, потеряет смысл. Действительно, в этом случае уже нельзя будет ни задать , ни вычислить . Иначе говоря, последняя частичная трапеция при записи -ой интегральной суммы будет всегда иметь бесконечно большое основание и ее площадь вычислить обычными методами не удастся. В этом случае выход из положения заключается в том, что находится не на бесконечности, а стремится к ней.Определение 1. Если существует конечный предел , то этот предел называется несобственным интегралом с бесконечным пределом от функции и обозначается .
Итак, по определению
. В этом и заключается метод вычисления таких интегралов. Очевидно, что поскольку данное вычисление связано с нахождением предела, то ответ может существовать или нет.Определение 2. Если в несобственном интеграле предел существует, то интеграл называется сходящимся, если предел не существует или равен бесконечности, то интеграл называется расходящимся.
Очевидно, с геометрической точки зрения несобственный интеграл с бесконечными пределами равен площади неограниченной области, лежащей между осью
, кривой и прямой .Аналогичным образом определяются несобственные интегралы и для других бесконечных интервалов:
Следует подчеркнуть, что интеграл
существует только тогда, когда существует каждый из интегралов и .Из сказанного выше следует, что несобственный интеграл это не предел интегральной суммы, а предел определенного интеграла с переменным верхним пределом интегрирования.
Рассмотрим пример вычисления несобственного интеграла с бесконечным пределом, который, кроме того, применяется и при решении других задач, о чем будет сказано в дальнейшем.
Если
, то , поэтому . Следовательно, в этом случае .Если
, то , поэтому и . Аналогично, если , то .Таким образом,
сходится, если и расходится, если .Несобственные интегралы с бесконечными пределами имеют место, в частности, в физике при вычислении работы по перемещению материальной точки с массой
из бесконечности в точку под действием силы притяжения. Эта работа называется потенциалом силы притяжения материальной точки при .2. Несобственные интегралы от разрывных функций
Рассмотрим теперь случай, когда функция
непрерывна на промежутке , а в точке терпит разрыв второго рода. В этом случае введение определенного интеграла на отрезке как предела интегральной суммы также невозможно. Дело в том, что отрезок разбить на частичных отрезков можно, но в этом случае первая частичная трапеция будет иметь бесконечную высоту и ее площадь вычислить невозможно. Однако, как и в случае с бесконечным интервалом интегрирования, здесь также существует выход. Необходимо искать площадь трапеции, левый конец основания которой приближается к точке .Определение. Если существует конечный предел , то этот предел называется несобственным интегралом от разрывной функции и обозначается .
Следовательно, вычисление несобственного интеграла от разрывной функции связано с нахождением предела:
Так же как и в предыдущем параграфе, если этот предел существует, то интеграл называется сходящимся, если не существует или равен бесконечности, то – расходящимся.
С геометрической точки зрения несобственный интеграл от разрывной функции равен площади криволинейной трапеции, у которой в какой-то точке высота равна бесконечности.
Если функция
терпит разрыв в точке , то .Если же разрыв происходит в точке
, то есть внутри , то в этом случае .В последнем случае несобственный интеграл существует (или сходится), если сходятся оба интеграла.
Так же как и несобственный интеграл с бесконечными пределами, данный интеграл тоже не является пределом
-ой интегральной суммы, а пределом определенного интеграла.Как и в предыдущем параграфе, рассмотрим пример, используемый при решении других задач.