Смекни!
smekni.com

История криптографии (стр. 3 из 5)

Диск Альберти.

Имея два таких прибора, корреспонденты догадывались о первой индексной букве на подвижном диске. При шифровании сообщения отправитель ставил индексную букву против любой буквы большого диска. Он информировал корреспондента о таком положении диска, записывая эту букву внешнего диска в качестве первой буквы шифртекста. Очередная буква открытого текста отыскивалась на неподвижном диске и стоящая против неё буква меньшего диска являлась результатом её зашифрования. После того как были зашифрованы несколько букв текста, положение индексной буквы изменялось, о чём также сообщалось корреспонденту.

Такой шифр имел две особенности, которые делают изобретение Альберти событием в истории криптографии. Во-первых, в отличие от шифров простой замены шифровальный диск использовал не один, а несколько алфавитов для зашифрования. Такие шифры получили название многоалфавитных. Во-вторых, шифровальный диск позволял использовать так называемые коды с перешифрованием, которые получили широкое распространение лишь в конце XIX в., то есть спустя четыре столетия после изобретения Альберти. Для этой цели на внешнем диске имелись цифры. Альберти составил код, состоящий из 336 кодовых групп, занумерованных от 11 до 4444. Каждому кодовому обозначению соответствовала некоторая законченная фраза. Когда такая фраза встречалась в открытом сообщении, она заменялась соответствующим кодовым обозначением, а с помощью диска цифры зашифровы­вались как обычные знаки открытого текста, превращаясь в буквы.

Богатым на новые идеи в криптографии оказался XVI в. Многоалфавитные шифры получили развитие в вышедшей в 1518 г. первой печатной книге по криптографии под названием "Полиграфия" [1]. Автором книги был один из самых знаме­нитых ученых того времени аббат Иоганнес Тритемий. В этой книге впервые в криптографии появляется квадратная таблица. Шифралфавиты записаны в строки таблицы один под дру­гим, причем каждый из них сдвинут на одну позицию влево по сравнению с предыдущим (см. табл. 2).

Тритемий предлагал использовать эту таблицу для многоалфавитного зашифрования самым простым из возможных способов: первая буква текста шифруется первым алфавитом, вторая буква — вторым и т. д. В этой таблице не было отдельного алфавита открытого текста, для этой цели служил алфавит первой строки. Таким образом, открытый текст, начинающийся со слов HUNC CAVETO VIRUM ..., приобретал вид HXPF GFBMCZ FUEIB ... .

Преимущество этого метода шифрования по сравнению с методом Альберти состоит в том, что с каждой буквой задействуется новый алфавит. Альберти менял алфавиты лишь по­сле трех или четырех слов. Поэтому его шифртекст состоял из отрезков, каждый из которых обладал закономерностями открытого текста, которые помогали вскрыть криптограмму. Побуквенное зашифрование не дает такого преимущества. Шифр Тритемия является также первым нетривиальным примером периодического шифра. Так называется многоалфавитный шифр, правило зашифрования которого состоит в использовании периодически повторяющейся последовательности простых замен.

В 1553 г. Джованни Баттиста Белазо предложил использовать для многоалфавитного шифра буквенный, легко запо­минаемый ключ, который он назвал паролем. Паролем могло служить слово или фраза. Пароль периодически записывался над открытым текстом. Буква пароля, расположенная над буквой текста, указывала на алфавит таблицы, который исполь­зовался для зашифрования этой буквы. Например, это мог быть алфавит из таблицы Тритемия, первой буквой которого являлась буква пароля. Однако Белазо, как и Тритемий, использовал в качестве шифралфавитов обычные алфавиты.

Еще одно важное усовершенствование многоалфавитных систем, состоящее в идее использования в качестве ключа текста самого сообщения или же шифрованного текста, при­надлежит Джероламо Кардано и Блезу де Виженеру. Такой шифр был назван самоключом. В книге Виженера 'Трактат о шифрах" самоключ представлен следующим образом. В про­стейшем случае за основу бралась таблица Тритемия с добав­ленными к ней в качестве первой строки и первого столбца алфавитами в их естественном порядке. Позже такая таблица стала называться таблицей Виженера. Подчеркнем, что в общем случае таблица Виженера состоит из циклически сдви­гаемых алфавитов, причем первая строка может быть произ­вольным смешанным алфавитом (см. табл. 4).

Первая строка служит алфавитом открытого текста, а первый столбец — алфавитом ключа. Для зашифрования открытого сообщения

Виженер предлагал в качестве ключевой последовательности (Г) использовать само сообщение (Т0) с добавленной к нему в качестве первой буквы(
), известной отправителю и получателю (этим идея Виженера отличалась от идеи Кардано, у которого не было начальной буквы и система которого не обеспечивала однозначности расшифрования). Последовательности букв подписывались друг под другом:

При этом пара букв, стоящих друг под другом в Г и

, указывала, соответственно, номера строк и столбцов таблицы, на пресечении которых находится знак
шифрованного текста (Тш). Например, фраза HUNC CAVETO VIRUM ..., использованная в предыдущих примерах, и начальная буква Р дают шифртекст YCHP ECUWZHIDAMG.

Во втором варианте Виженер предлагал в качестве ключевой последовательности использовать шифрованный текст:

Самоключ Виженера был незаслуженно забыт на долгое время, а под шифром Виженера до сих пор понимают самый простой вариант с коротким ключевым словом и с таблицей, состоящей из обычных алфавитов.

В истории криптографии XVII — XVIII в. называют эрой "черных кабинетов". В этот период во многих государствах Европы, в первую очередь во Франции, получили развитие дешифровальные подразделения, названные "черными кабинетами". Первый из них образован по инициативе кардинала Ришелье при дворе короля Людовика XIII. Его возглавил первый профессиональный криптограф Франции Антуан Россиньоль. Следует отметить, что некоторые оригинальные идеи, возникшие в криптографии в этот период, связаны с именем самого Ришелье, который использовал, например, для секретной переписки с королем оригинальный шифр перестановки с переменным ключом.

Много новых идей в криптографии принес XIX в. Изобретение в середине XIX в. телеграфа и других технических видов связи дало новый толчок развитию криптографии. Информация передавалась в виде токовых и бестоковых посылок, то есть представлялась в двоичном виде. Поэтому возникла проблема "рационального" представления информа ции, которая решалась с помощью кодов. Коды позволяли передать длинное слово или целую фразу двумя-тремя знаками. Появилась потребность в высокоскоростных способах шифрования и в корректирующих кодах, необходимых в связи с неизбежными ошибками при передаче сообщений.

Во второй половине XIX в. появился весьма устойчивый способ усложнения числовых кодов — гаммирование. Он заключался в перешифровании закодированного сообщения с помощью некоторого ключевого числа, которое и называлось гаммой. Шифрование с помощью гаммы состояло в сложении всех кодированных групп сообщения с одним и тем же ключевым числом. Эту операцию стали называть "наложением гаммы". Например, результатом наложения гаммы 6413 на кодированный текст 3425 7102 8139 являлась числовая последовательность 9838 3515 4552:

Единицы переноса, появляющиеся при сложении между кодовыми группами, опускались. "Снятие гаммы" являлось обратной операцией:

В 1888 г. француз маркиз де Виари в одной из своих научных статей, посвященных криптографии, обозначил греческой буквой X любую букву шифрованного текста, греческой буквой Г любую букву гаммы и строчной буквой С любую букву открытого текста. Он, по сути, доказал, что алгебраическая формула

воспроизводит зашифрование по Виженеру при замене букв алфавита числами согласно следующей таблице:

Тем самым была заложена алгебраическая основа для исследования шифров замены типа шифра Виженера. Используя уравнение шифрования, можно было отказаться от громоздкой таблицы Виженера.

Позже лозунговая гамма стала произвольной последовательностью, а шифр с уравнением шифрования (1) стал называться шифром гаммирования.