Смекни!
smekni.com

Оптимизация программы производства транспортировки продукции (стр. 2 из 5)

U*i – сырье новых филиалов; i=1,3.

Q – количество сырья

Для автоматизированной обработки данных и вычислений используется пакет программ линейной оптимизации программного продукта Microsoft Excel.

Решение

Определяем оптимальные производственные мощности филиалов для производства определенного количества продукции различных видов с помощью транспортной задачи.


Постановка транспортной задачи.

Требуется определить объем производимой продукции j-того вида на i-ом филиале, т.е. xij, которое представлено в таблице расширения мощностей (см. рис.1 Приложение А)

X=|xij||; i=1,6, j=1,4

Целевая функция (затраты на производство)

F=1296806

Ограничения

1) На мощности (см. рис. 3 Приложение Б)

, i=1,6;

, i=1,3

2) На спрос (см. рис.4 Приложение Б)

, j=1,4

3) На запасы (см. рис.5 Приложение Б)

, i=1,3

Отчет по результатам (см. Приложение В) показывает какие ресурсы, на каких филиалах используются полностью, а какие не полностью.

Отчет по устойчивости (см. Приложение Г) позволяет нам увидеть, какие ресурсы дефицитные.

Для определения кредита используем формулу

При этом, для того, чтобы найти кредит на сырье, необходимо знать, сколько надо сырья для того, чтобы производить продукцию и стоимость единицы сырья.

Количество сырья для производительности продукции

,

Q = 10300

Для нахождения кредита на сырье, используем формулу

T1 = 23587000

Для того, чтобы найти кредит на оборудование, воспользуемся формулой

, i=1,6; j=1,4

T2= 180


Для расширения производства предприятию ОАО «Даль Промнефть» необходим кредит суммой 23587180

Моделирование оптимальной структуры автопарка машин

Теперь всю произведенную продукцию в течение месяца необходимо перевезти на оптовую базу. Перевозки осуществляются от i-того филиала на оптовую базу, известны расстояния от филиалов до оптовой базы. Также известна средняя скорость движения автомашины. Машинный парк предприятия состоит из 4-х видов машин, количество машин каждого вида и их грузоподъемность дано в таблице 7. Для каждого вида машин известны средняя стоимость эксплуатации машины в сутки и часовые затраты на горюче-смазочные материалы (Таблица 8).

Машинный парк предприятия ОАО «Даль Промнефть» работает в 2 смены по 8 часов. Среднее число рабочих дней в месяц = 22.

Предполагается, что грузы перевозятся от филиалов до оптовой базы, а не наоборот, поэтому количество продукции, перевозимое машинами, будут неотрицательными.

Затраты предприятия по использованию транспорта состоят из средней стоимости эксплуатации по видам транспорта в сутки, и суточных затрат на горюче-смазочные материалы в зависимости от среднего времени транспортировки груза.

Необходимо определить оптимальную структуру парка машин предприятия, которые будут транспортировать произведенную продукцию на оптовую базу при условии минимизации общих затрат на транспортировку.


Расстояния от филиалов до оптовой базы

(560; 260; 390; 220; 370; 220)

Таблица 7 (характеристика парка машин)

Вид машин ЗИЛ МАЗ КАМАЗ УРАЛ
Количество, (шт) 35 27 15 10
Грузоподъемность, тонны 10 15 25 40

Таблица 8 (Затраты на использование транспортных средств)

Вид машины ЗИЛ МАЗ КАМАЗ УРАЛ
di, руб/сутки 50 65 70 75
gi, руб/час 1,6 1,8 2 2,2

Математическая модель.

n – вид транспортного средства;

mi – количество машин i-го типа, i=1,4;

Si – расстояния от филиалов до оптовой базы, i=1,6;

W – средняя скорость движения автомашины;

pi – грузоподъемность, i=1,4;

γi часовые затраты на горюче-смазочные материалы, i=1,4;

di – средняя скорость эксплуатации машины в сутки, i=1,4;

Tij – среднее время транспортировки груза для каждого типа транспорта и груза, i=1,4, j=1,4;

R – рейсы;

Cij удельные произведенные затраты на перевозку единицы груза, i=1,4; j=1,4;

Ai – мощность автомашины, i=1,4;

Bj – потребность в продукции, j=1,4;

λij – удельная грузоподъемность транспортного средства, i=1,4, j=1,4;

xij – объем перевозок, i=1,4, j=1,4;

Kij – количество автомашин каждого филиала, i=1,4, j=1,4;

t – количество часов в смену;

V – количество смен;

P – количество рабочих дней;

Q* - оптимальная структура парка машин;

Qij – количество автомашин, i=1,4, j=1,4.

Решение.

Определяем минимальные общие затраты на транспортировку, с помощью универсальной транспортной задачи.

Постановка Универсальной транспортной задачи.

Найдем среднее время транспортировки груза (см. рис.6 Приложения Д), для этого используем формулу

, i=1,4, j=1,4

Определим мощности транспортных средств по формуле

, i=1,4

Получим

A1 = 12320 маш.-ч,

A2 = 9504 маш.-ч,

A3 = 5280 маш.-ч,

A4 = 3520 маш.-ч.

Далее рассчитаем удельные приведенные затраты (см. рис.7 Приложение Д) по формуле

, i=1,4, j=1,4

После этого рассчитываем показатель удельной производительности

, i=1,4, j=1,4

После этого можно определить минимальные общие затраты на транспортировку.

Целевая функция

, i=1,4, j=1,4

F=1318667

Ограничения

1)

на мощности филиалов

, i=1,4, j=1,4

2)

на потребность в продукции