Метод найменших квадратів
У процесі вивчення різних питань природознавства, економіки і техніки, соціології, педагогіки доводиться на основі великої кількості дослідних даних виявляти суттєві фактори, які впливають на досліджуваний об’єкт, а також встановлювати форму зв’язку між різними зв’язаними одна з одною величинами (ознаками).
Нехай у результаті досліджень дістали таку таблицю деякої функціональної залежності:
Таблиця 1
x | x1 | x2 | … | xn |
y | y1 | y2 | … | yn |
Треба знайти аналітичний вигляд функції
, яка добре відображала б цю таблицю дослідних даних. Функцію можна шукати у вигляді інтерполяційного поліному. Але інтерполяційні поліноми не завжди добре відображають характер поведінки таблично заданої функції. До того ж значення дістають у результаті експерименту, а вони, як правило, сумнівні. У цьому разі задача інтерполювання табличної функції втрачає сенс. Тому шукають таку функцію , значення якої при досить близькі до табличних значень . Формулу називають емпіричною, або рівнянням регресії на . Емпіричні формули мають велике практичне значення, вдало підібрана емпірична формула дає змогу не тільки апроксимувати сукупність експериментальних даних, «згладжуючи» значення величини , а й екстраполювати знайдену залежність на інші проміжки значень .Процес побудови емпіричних формул складається з двох етапів: встановлення загального виду цієї формули і визначення найкращих її параметрів.
Щоб встановити вигляд емпіричної формули, на площині будують точки з координатами
. Деякі з цих точок сполучають плавною кривою, яку проводять так, щоб вона проходила якомога ближче до всіх даних точок. Після цього візуально визначають, графік якої з відомих нам функцій найкраще підходить до побудованої кривої. Звичайно, намагаються підібрати найпростіші функції: лінійну, квадратичну, дробово-раціональну, степеневу, показникову, логарифмічну.Встановивши вигляд емпіричної формули, треба знайти її параметри (коефіцієнти). Найточніші значення коефіцієнтів емпіричної формули визначають методом найменших квадратів. Цей метод запропонували відомі математики К. Гаусс і А. Лежандр.
Розглянемо суть методу найменших квадратів.
Нехай емпірична формула має вигляд
, (1)де
, , …, - невідомі коефіцієнти. Треба знайти такі значення коефіцієнтів , за яких крива (1) якомога ближче проходитиме до всіх точок , , …, , знайдених експериментально. Зрозуміло, що жодна з експериментальних точок не задовольняє точно рівняння (1). Відхилення від підстановки координат у рівняння (1) дорівнюватимуть величинам .За методом найменших квадратів найкращі значення коефіцієнтів
ті, для яких сума квадратів відхиленьдослідних даних
від обчислених за емпіричною формулою (1) найменша. Звідси випливає, що величина (2), яка є функцією від коефіцієнтів , повинна мати мінімум. Необхідна умов мінімуму функції багатьох змінних ─ її частинні похідні мають дорівнювати нулю, тобто , , …, .Диференціюючи вираз (2) по невідомих параметрах
, матимемо відносно них систему рівнянь:Система (3) називається нормальною. Якщо вона має розв’язок, то він єдиний, і буде шуканим.
Якщо емпірична функція (1) лінійна відносно параметрів
, то нормальна система (3) буде системою з лінійних рівнянь відносно шуканих параметрів.Будуючи емпіричні формули, припускатимемо, що експериментальні дані
додатні.Якщо серед значень
і є від’ємні, то завжди можна знайти такі додатні числа і , що і .Тому розв’язування поставленої задачі завжди можна звести до побудови емпіричної формули для додатних значень
.Побудова лінійної емпіричної формули. Нехай між даними
існує лінійна залежність. Шукатимемо емпіричну формулу у вигляді , (4)де коефіцієнти
і невідомі.Знайдемо значення
і , за яких функція матиме мінімальне значення. Щоб знайти ці значення, прирівняємо до нуля частинні похідні функціїЗвідси, врахувавши, що
, маємо (5)Розв’язавши відносно
і останню систему, знайдемоЗазначимо, що, крім графічного, є ще й аналітичний критерій виявлення лінійної залежності між значеннями
і .Покладемо
, , .Якщо
, то залежність між і лінійна, бо точки лежатимуть на одній прямій. Якщо , то між і існує майже лінійна залежність, оскільки точки лежатимуть близько до деякої прямої.