Смекни!
smekni.com

Свойства усредненной функции с сильной осцилляцией (стр. 2 из 3)

Ограничение №3

Учитывая ограничения 1, 2, 3 получаем:

Следовательно,

ограничение на
удовлетворяющее поставленной задаче, при котором присутствие
не влияет на поведение функции
.

§ 3 Рассмотрим поведение функции

для случаев:

3.1)

3.2)


3.3)

Вычислим отдельно интегральное выражение, стоящее в числителе:

=

=

рассматривая пределы при

видим что на поведение функции оказывает влияние только главный член

Поведение данной функции при

эквивалентно поведению функции

(*)

Вычислим интеграл в знаменателе:

=

(**)

Учитывая (*)и (**) получаем

Следовательно, по формуле (2) получаем

3.4

Отдельно вычислим числитель и знаменатель:

По ранее доказанному в пункте 2.4 мы можем сказать что второй интеграл не оказывает влияния на поведение функции. Поэтому мы можем утверждать, что числитель эквивалентен выражению:

Вычислим знаменатель:

Разделив интеграл на 2 интеграла, мы получаем:

По пункту 2.4 можем вывести что второй интеграл не влияет на поведение функции при

Следовательно, знаменатель:


§4. Рассмотрим поведение второй производной

Для облегчения вычислений введем обозначения:

При этом формула для

примет вид
(6)

4.1

Виду того, что d(x) очень мал то

будет несравним с d(x) т.е.


4.2

используя равенства, полученные в пункте 2.2 и 3.2, преобразуя данное равенство, приходим к выражению:

(Все выкладки приводить не буду в виду их громоздкости и сложности для восприятия. Добавлю только что все выкладки, примененные в данном пункте полностью повторяют ограничения и эквивалентные выражения, использованные в пунктах 2.2 и 3.2).

Отсюда следует что

4.3

Используя данные, полученные в п.3.3 получаем что

Возвращаясь к п. 3.3 находим: