Покажем это. Приведём все три вектора к одному началу и построим на них параллелепипед. Пусть основанием параллелепипеда является параллелограмм, построенный на векторах
. Площадь этого параллелограмма . Обозначим через единичный вектор, перпендикулярный плоскости основания нашего параллелепипеда, а через – угол между векторами и . Тогда . Скалярное произведение векторов , взятое по абсолютной величине, равно высоте h нашего параллелепипеда (если тройка векторов правая, то , а если вектора , и образуют левую тройку векторов, то ).Объем параллелепипеда
=
.Очевидно, что правая и левая части этого равенства равны по абсолютной величине и имеют одинаковые знаки.
Таким образом, смешанное произведение трёх векторов есть число, модуль которого равен объёму параллелепипеда, построенного на данных векторах. Это число положительное, если векторы образуют правую тройку векторов и отрицательное в противном случае.
3. Круговая перестановка сомножителей в смешанном произведении не меняет его величины, так как при круговой перестановке векторов правая тройка векторов остаётся правой, а левая – левой, т. е.
.4. Из определения смешанного произведения и векторного произведения следует, что при перестановке местами двух соседних сомножителей смешанного произведения оно меняет знак, так как при такой перестановке векторов правая тройка становится левой, а левая – правой, то есть
.5. Найдем смешанное произведение трех векторов, заданных разложениями в декартовом базисе.
Пусть
, и . .Следовательно,
.
Итак,
.