Красноярский Государственный Педагогический Университет им. В.П. Астафьева.
Реферат
На тему: «Исследование элементарных функций».
Выполнила: Квашенко Д.В.
Проверил: Адольф В.А.
г. Красноярск
2005г.
Содержание:
· Определение элементарных функций…………….3
· Функция и её свойства……………………………………..3
· Способы задания функции……………………………….4
· Определение функции……………………………………..4
· Исследование элементарных функций………....6
а) Линейная функция…………………………….......7
б) Степенная функция…………………………………..8
в) Показательная функция……………………………9
г) Логарифмическая функция……………………..10
д) Тригонометрическая функция………………..11
o Y=sinx……………………………….…11
o Y=cosx…………………………………13
o Y=tgx…………………………………..14
o Y=ctgx…………………………………15
е) Обратно тригонометрическая функция..16
o Y=arcsinx…………………………….16
o Y=arccosx……………………………17
o Y=arctgx……………………………..18
o Y=arcctgx…………………………….19
· Список литературы………………………………………..20
Определение элементарных функций.
Функции С (постоянная), xⁿ, ах, 1оgа х, sin х, соs х, tg х, ctgx, аrcsin х, аrccos х, аrctg х называются простейшими элементарными функциями.
Применяя к этим функциям арифметические действия или операции функции от функции, мы будем получать новые более сложные функции, которые называются элементарными функциями.
Например, у = sin (xⁿ) — элементарная функция.
Элементарные функции нам известны из школьной математики.
Функция - зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
●Переменная х - независимая переменная или аргумент.
●Переменная у - зависимая переменная.
●Значение функции - значение у, соответствующее заданному
значению х.
●Область определения функции - все значения, которые принимает независимая переменная.
●Область значений функции (множество значений)-все значения, которые принимает функция.
●Функция является четной - если для любого х из области определения функции выполняется равенство f(x)=f(-x).
●Функция является нечетной - если для любого х из области определения функции выполняется равенство f(-x)=-f(x).
●Возрастающая функция - если для любых х1и х2, таких, что х1< х2, выполняется неравенство f(х1)<f(х2).
●Убывающая функция - если для любых х1и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2).
Способы задания функции:
●Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x) - заданная функция с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.
●На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента.
Определение функции.
Функция, прежде всего, – это одно из основных понятий математического анализа, и чтобы далее рассматривать различные функции, следует дать определение функции.
Пусть даны две переменные x и y с областями изменения X и Y. Предположим, что переменной x может быть приписано произвольное значение из области X без каких-либо ограничений. Тогда переменная y называется функцией от переменной x в области её изменения X, если по некоторому правилу или закону каждому значению x из X ставится в соответствие одно определенное значение y из Y.
Независимая переменная x называется также аргументом функции.
В этом определении существенны два момента: во-первых, указание области X изменения аргумента x (её называют также областью определения функции) и, во-вторых, установление правила или закона соответствия между значениями x и y (Область Y изменения функции обычно не указывается, поскольку самый закон соответствия уже определяет множество принимаемых функцией значений).
Можно в определении понятия функции стать на более общую точку зрения, допуская, чтобы каждому значению x из X отвечало не одно, а несколько значений y (и даже бесконечное множество их). В подобных случаях функцию называют многозначной, в отличие от однозначной функции, определенной выше.
Для указания того факта, что y есть функция от x, пишут:
y=f (x), y=g (x), y=F (x) и т.п.
Буквы f, g, F, … характеризуют именно то правило, по которому получается значение x, отвечающее заданному y. Поэтому, если одновременно рассматриваются различные функции от одного и того же аргумента x, связанные с различными законами соответствия, их не следует обозначать одной и той же буквой.
Хотя именно буква f связана со словом “функция”, но для обозначения функциональной зависимости может применяться и любая другая буква; иногда даже повторяют одну и ту же букву y: y=y(x). В некоторых случаях пишут аргумент и в виде значка при функции, например,
.Если, рассматривая функцию y=f(x), мы хотим отметить её частное значение, которое отвечает выбранному частному значению x, равному
, то для обозначения его употребляют символ f( ). Например, еслиF (x)=
, g (t)= , то f(1) означает численное значение функции f(x) при x=1, т.е. попросту число , аналогично, g(5) означает число 2, и т. д.Теперь обратимся к самому правилу, или закону соответствия между значениями переменных, которое составляет сущность понятия функциональной зависимости.
Наиболее просто осуществление этого правила с помощью формулы, которая представляет функцию в виде аналитического выражения, указывающего те аналитические операции или действия над постоянными числами и над значением x, которые надо произвести, чтобы получить соответствующее значение y. Этот аналитический способ задания функции является наиболее важным для математического анализа.
Однако будет ошибочным думать, что это – единственный способ, которым может быть задана функция. В самой математике нередки случаи, когда функция определяется без помощи формулы. Такова, например, функция E(x) – “целая часть числа x”. Например,
E (1)=1, E (2,5)=2, E (
)=3, E (- )=-4 и. т.,хотя никакой формулы, выражающей E(x), у нас нет.
Функция, все значения которой равны между собой, называется постоянной. Постоянную функцию обозначают C (f (x) = C).
Функция f (x) называется возрастающей (убывающей) на множестве X, если для любой пары чисел
и этого множества из неравенства < следует, что f ( ) < f ( ) (f ( ) > f ( )).Функция f(x) называется четной, если область её определения X есть множество, симметричное относительно начала координат, и при любом x из X имеет место равенство f(-x)=f(x).
График четной функции симметричен относительно оси Oy.
Функция f(x) называется нечетной, если область её определения X есть множество, симметричное относительно начала координат, и если при любом x из X имеет место равенство f(-x)=-f(x).
График нечетной функции симметричен относительно начала координат.
Сумма и разность двух четных (нечетных) функций есть функция четная (нечетная).
Действительно, пусть y(x)=f(x) + g(x). Тогда, если f(x) и g(x) – четные, то y (-x) = f(-x) + g(-x) = f (x) + g (x) = y (x). Если же f (x) и g (x) – нечетные функции, то функция y (x) также будет нечетной, y (-x) = f (-x) + g (-x) = -f (x) – g (x) = -[f (x) + g (x)] = -y (x). (Для разности доказательство аналогичное).
Произведение двух четных или двух нечетных функций есть функция четная, а произведение четной функции на нечетную – нечетная функция.
В самом деле, пусть y (x) = f (x)*g (x) и f (x) и g (x) – четные функции, тогда y (-x) = f (-x)*g (-x) = f (x)*g (x) = y (x); если f (x) и g (x) – нечетные функции, то y (-x) = f (-x)*g(-x) = [-f (x)]*[-g(x)] = y (x); если же f (x) – четная, а g (x) – нечетная функции, то y (x) = f (x)*g (-x) = f (x)*[-g (x)] = -y (x).
Функция f (x) называется периодической, если существует число Т
0 такое, что для любого значения x из области определения функции выполняется равенство f (x - T) = f (x) = f (x + T). Число T называется периодом функции. Если T – период функции, то её периодом является также число – T, так как f (x-T) = f [(x - T) +T] = f (x).