Если T – период функции, то её периодом будет также и число kT, где k – любое целое число (k=
1, 2, 3; …). Действительно, f (x 2T) = f [(x T) T] = f (x T) = f (x), f (x 3T) = f [(x 2T) T] = f (x 2T) = f (x 2T) = f (x);обычно под периодом функции понимают наименьший из положительных периодов, если такой период существует.Исследование элементарных функций .
Основные простейшие элементарные функции:
· Линейная функция y=kx+b;
· Степенная функция y=xⁿ;
· Квадратичная функция;
· Показательная функция
(0 <a 1);· Логарифмическая функция
x (0 < a 1);· Тригонометрические функции: sinx, cosx, tgx, ctgx;
· Обратные тригонометрические функции: arcsinx, arccosx, arctgx, arcctgx.
y = kx + b
1. Областью определения линейной функции служит множество R всех действительных чисел, так как выражение kx+b имеет смысл при любых значениях x
2. Множеством значений линейной функции при k¹0 является множество R всех действительных чисел
3. Функция не является ни четной, ни нечетной, так как f (-x) = -kx + b .
4. Функция не является периодической, за исключением частного случая, когда функция имеет вид y=b.
5. Асимптоты графика функции не существуют.
6. Функция возрастает при k>0, функция убывает при k<0.
7. Функция не является ограниченной.
8. График линейной функции y=kx+b – прямая линия. Для построения этого графика, очевидно, достаточно двух точек, например A(0; b) и B(-b/k; 0), если k¹0. График линейной функции y=kx+b может быть также построен с помощью параллельного переноса графика функции y=kx. Коэффициент k характеризует угол, который образует прямая y=kx и положительное направление оси Ox, поэтому k называется угловым коэффициентом. Если k>0, то этот угол острый, если k<0 – тупой; а при k=0 прямая параллельна оси Ox.
9. Точек перегиба не существует.
10. Не существует экстремальных точек.
y=kx+b (k<0)y=kx+b (k>0)
Степенная функция с натуральным показателем y=xn,
где n-натуральное число.
1. Область определения функции: D(f)= R;
2. Область значений: E(f)= (0;+∞);
3. Функция является четной, т.е. f(-x)=f(x);
4. Нули функции: y=0 при x=0;
5. Функция убывает при x
(-∞;0];6. Функция возрастает при x
[0;+ ∞);7.
8. Если n-четное, то экстремум функции x=0
Если n-нечетное, то экстремумов функции нет
9. Если n-четное, то точек перегиба нет
Если n-нечетное, то точка перегиба x=0
10. График функции:
a) Если n=2, то графиком функции является квадратная парабола;
b)Если п = 3, то функция задана формулой у = х3. Ее графиком является кубическая парабола;
c)Если п — нечетное натуральное число, причем п 1, то функция обладает свойствами теми же, что и у = х3.