| | | |
0 | 0 | 202,5 | 0,85355342 |
3 | -0,00080306 | 207 | 0,6893642 |
6 | -0,00119426 | 210 | 0,57635189 |
9 | -0,00261932 | 213 | 0,4614465 |
12 | -0,00448897 | 216 | 0,34549155 |
15 | -0,00667995 | 219 | 0,22934931 |
18 | -0,00903692 | 222 | 0,1138931 |
21 | -0,01137519 | 225 | 0,00000002 |
24 | -0,01312438 | 228 | -0,11145712 |
27 | -0,01512438 | 231 | -0,21961736 |
30 | -0,01604446 | 234 | -0,32363903 |
33 | -0,01597149 | 237 | -0,42270819 |
36 | -0,01462203 | 240 | -0,5160445 |
39 | -0,01170562 | 243 | -0,60290965 |
42 | -0,00692866 | 246 | -0,65261345 |
45 | 0,00000002 | 249 | -0,75452006 |
48 | 0,00936458 | 252 | -0,81805397 |
51 | 0,02143757 | 255 | -0,87270535 |
54 | 0,03647455 | 258 | -0,91803444 |
57 | 0,0547098 | 261 | -0,95367586 |
60 | 0,07635185 | 264 | -0,97934187 |
63 | 0,10157893 | 267 | -0,99482505 |
66 | 0,1305352 | 270 | -1 |
67,5 | 0,14644661 |
З таблиці легко вбачаються наступні гіпотези: коріннями рівняння, що належать відрізку
Відповідь.
ТРИГОНОМЕТРИЧНІ НЕРІВНОСТІ
Рішення тригонометричних нерівностей за допомогою одиничної окружності
При рішенні тригонометричних нерівностей виду
де
Приклад Вирішите нерівність
Рішення. Намалюємо тригонометричну окружність і відзначимо на ній крапки, для яких ордината перевершує
Для
рішенням даної нерівності будуть
Ясно також, що якщо деяке число
Відповідь.
Для рішення нерівностей з тангенсом і котангенсом корисне поняття про лінію тангенсів і котангенсів. Такими є прямі
Легко помітити, що якщо побудувати промінь із початком на початку координат, що становить кут
Приклад Вирішите нерівність
Рішення
Позначимо
Вертаючись до змінного
Відповідь.
Нерівності зі зворотними тригонометричними функціями зручно вирішувати з використанням графіків зворотних тригонометричних функцій. Покажемо, як це робиться на прикладі.
Рішення тригонометричних нерівностей графічним методом
Помітимо, що якщо
Розглянемо рішення нерівності
Оскільки
Нехай
Будуємо графіки функцій
На відрізку