Смекни!
smekni.com

Шпаргалка по Высшей математике 3 (стр. 9 из 21)

Q(x) = b0xm + b1xm-1 +…+bm - многочлены.

Итого:

Первый замечательный предел.

Второй замечательный предел.

Часто если непосредственное нахождение предела какой – либо функции представляется сложным, то можно путем преобразования функции свести задачу к нахождению замечательных пределов.

Кроме трех, изложенных выше, пределов можно записать следующие полезные на практике соотношения:

Пример. Найти предел.

Пример. Найти предел.

24. Непрерывность функции. Точки разрыва функции и их классификация.

Определение. Функция f(x), определенная в окрестности некоторой точки х0, называется непрерывной в точке х0, если предел функции и ее значение в этой точке равны, т.е.

Тот же факт можно записать иначе:

Определение. Если функция f(x) определена в некоторой окрестности точки х0, но не является непрерывной в самой точке х0, то она называется разрывной функцией, а точка х0 – точкой разрыва.

Определение. Функция f(x) называется непрерывной в точке х0, если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию

верно неравенство

.

Определение. Функция f(x) называется непрерывной в точке х = х0, если приращение функции в точке х0 является бесконечно малой величиной.

f(x) = f(x0) + a(x)

где a(х) – бесконечно малая при х®х0.

Свойства непрерывных функций.

1) Сумма, разность и произведение непрерывных в точке х0 функций – есть функция, непрерывная в точке х0.

2) Частное двух непрерывных функций

– есть непрерывная функция при условии, что g(x) не равна нулю в точке х0.

3) Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u = f(x), v = g(x) – непрерывные функции в точке х = х0, то функция v = g(f(x)) – тоже непрерывнаяфункция в этой точке.

Справедливость приведенных выше свойств можно легко доказать, используя теоремы о пределах.

Точки разрыва и их классификация.

Рассмотрим некоторую функцию f(x), непрерывную в окрестности точки х0, за исключением может быть самой этой точки. Из определения точки разрыва функции следует, что х = х0 является точкой разрыва, если функция не определена в этой точке, или не является в ней непрерывной.

Следует отметить также, что непрерывность функции может быть односторонней. Поясним это следующим образом.

Если односторонний предел

, то функция называется непрерывной справа.

Если односторонний предел

, то функция называется непрерывной слева.

Определение. Точка х0 называется точкой разрыва функции f(x), если f(x) не определена в точке х0 или не является непрерывной в этой точке.

Определение. Точка х0 называется точкой разрыва 1- го рода, если в этой точке функция f(x) имеет конечные, но не равные друг другу левый и правый пределы.

Для выполнения условий этого определения не требуется, чтобы функция была определена в точке х = х0, достаточно того, что она определена слева и справа от нее.

Из определения можно сделать вывод, что в точке разрыва 1 – го рода функция может иметь только конечный скачок. В некоторых частных случаях точку разрыва 1 – го рода еще иногда называют устранимой точкой разрыва, но подробнее об этом поговорим ниже.

Определение. Точка х0 называется точкой разрыва 2 – го рода, если в этой точке функция f(x) не имеет хотя бы одного из односторонних пределов или хотя бы один из них бесконечен.

Пример. Функция f(x) =

имеет в точке х0 = 0 точку разрыва 2 – го рода, т.к.

.

Пример. f(x) =

Функция не определена в точке х = 0, но имеет в ней конечный предел

, т.е. в точке х = 0 функция имеет точку разрыва 1 – го рода. Это – устранимая точка разрыва, т.к. если доопределить функцию:

График этой функции:

Таким образом, для того, чтобы точка разрыва 1 – го рода была устранимой, необходимо, чтобы односторонние пределы справа и слева были конечны и равны, а функция была бы в этой точке не определена.

25. Производная функции. Ее геометрический и механический смысл. Основные правила дифференцирования.

Пусть функция у=ƒ(х) определена на некотором интервале (a;b). Проделаем следующие операции:

- аргументу х є (α; b) дадим приращение ∆х: х+∆х є (a; b);

- найдем соответствующее приращение функции: ∆у=ƒ(х+∆х)—ƒ(х);

- составим отношение приращения функции к приращению аргумента: ∆у/∆х;

- найдем предел этого отношения при ∆х→0:

Если этот предел существует, то его называют производной функции ƒ(х) и обозначают одним из символов f'x, ƒ'(х); у'; у'х;.dy/dx

Производной функции у=ƒ(х) β точке х0 называется предел отношения приращения функции к приращению аргумента, когда приращение аргумента стремится к нулю.

Итак, по определению

Производная функции ƒ(х) есть некоторая функция f'(x), произведённая из данной функции.

Функция у=ƒ(х), имеющая производную в каждой точке интервала (a;b), называется дифференцируемой в этом интервале; операция нахождения производной функции называется дифференцированием.

Значение производной функции у=ƒ(х) в точке х=х0 обозначается одним из символов: ƒ'(х0), у'|x=xo или у'(х0).

Пример 1

Найти производную функции у=С, С=const.

Решение:

- Значению х даем приращение ∆х;
- находим приращение функции ∆у: ∆у=ƒ(х+∆х)-ƒ(х)=С-С= 0;
- значит, ∆(y)/ ∆(x)=0/∆(x)=0;
- следовательно,

Пример 2

Найти производную функции у=х2.

Решение:

- Аргументу х даем приращение ∆х;
- находим ∆у: ∆у=(х+∆х)2—х2=2х•∆х+(∆х)2;
- составляем отношение

- находим предел этого отношения:

Таким образом, (х2)'=2х.

В задаче про скорость прямолинейного движения было получено

Это равенство перепишем в виде V=S't, т. е. скорость прямолинейного движения материальной точки в момент времени t есть производная от пути S по времени t. В этом заключается механический смысл производной.

Обобщая, можно сказать, что если функция y=f(x) описывает какой-либо физический процесс, то производная у' есть скорость протекания этого процесса. В этом состоит физический смысл производной.

В задаче про касательную к кривой был найден угловой коэффициент касательной

Это равенство перепишем в виде

ƒ'(х) = tga = k,

т. е. производная ƒ'(х) β точке х равна угловому коэффициенту касательной к графику функции у = ƒ(х) в точке, абсцисса которой равна х. В этом заключается геометрический смысл производной.

Основные правила дифференцирования

Обозначим f(x) = u, g(x) = v- функции, дифференцируемые в точке х.

1) (u  v) = u  v

2) (uv) = uv + uv

3)

, если v  0

Эти правила могут быть легко доказаны на основе теорем о пределах.

Производные основных элементарных функций:

1)С = 0; 9)